Решение обратных задач теплопроводности для элементов конструкций простой геометрической формы

Решение обратных задач теплопроводности для элементов конструкций простой геометрической формы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДНЕПРОПЕТРОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

КАФЕДРА ПГД И ТМО






 












НА ТЕМУ: «РЕШЕНИЕ ОБРАТНЫХ ЗАДАЧ ТЕПЛОПРОВОДНОСТИ ДЛЯ

            ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПРОСТОЙ ГЕОМЕТРИЧЕСКО ФОРМЫ»





ВЫПОЛНИЛА: СТ. ГР. МТ-98-1

                         ДАЦЕНКО И. Н.



















ДНЕПРОПЕТРОВСК

-2001-
























Постановки задач о теплообмене между твердым телом или некоторой системой и окружающей средой рассматрива­ются с точки зрения соотношений причина—следствие. При этом к причинным характеристикам теплообменного процесса в теле (сис­теме) в соответствии с принятой моделью отнесем граничные усло­вия и их параметры, начальные условия, теплофизические свойст­ва, внутренние источники тепла и проводимости, а также геометри­ческие характеристики тела или системы. Тогда следствием будет то или иное тепловое состояние, определяемое температурным полем исследуемого объекта.

Установление причинно - следственных связей составляет цель прямых задач теплообмена. Наоборот, если по определенной ин­формации о температурном поле требуется восстановить причин­ные характеристики, то имеем ту или иную постановку  обратной задачи теплообмена.

Постановки обратных задач, в отличие от прямых, не соответ­ствуют физически реализуемым событиям. Например, нельзя об­ратить ход теплообменного процесса и тем более изменить течение времени. Таким образом, можно говорить о физической некоррект­ности постановки обратной задачи. Естественно, что при математи­ческой формализации она проявляется уже как математическая некорректность (чаще всего неустойчивость решения) и обратные задачи представляют собой типичный пример некорректно постав­ленных задач в теории теплообмена.

         Граничная ОЗТ — восстановление тепловых условий на гра­нице тела. К этому типу задач отнесем также задачу, связанную с продолжением решения уравнения теплопроводности от некоторой границы, где одновременно заданы температура Т( х*, т) и плот­ность теплового потока q( х*, т);    

 Организация охлаждения конструкции камер сгорания является одним из важнейших вопросов проектирования и по сравнению с другими типами тепловых машин усложняется тем, что тепловые процессы протекают при высоких температурах К и давлениях. Так как высокотемпературные продукты сгорания движутся по камере с очень большой скоростью, то резко возрастают коэффициент конвективной теплоотдачи от горячих продуктов сгорания к стенкам камеры и конвективные тепловые потоки  , доходящие в критическом сечении сопла до 23,26 - 69,78. Кроме того, теплообмен в конструкции характеризуется высоким уровнем радиации в камере, что приводит к большим лучистым тепловым потокам    /13/.

    Вследствие мощных суммарных конвективных и лучистых тепловых потоков в стенке камеры температура ее может достигать значений превышающих (1000 - 1500С. Величина этих потоков определяется значениями режимных параметров, составом продуктов сгорания в ядре газового потока и в пристеночном слое, а также температурой внутренней поверхности конструкции. Из-за изменения диаметра проточной части по длине теплопровод от продуктов сгорания оказывается неравномерным. Неравномерным является также распределение температуры по периметру, обусловленное изменением состава продуктов сгорания.

    Коэффициент теплоотдачи от продуктов сгорания определяется с учетом совместного воздействия конвективного и лучистого теплового потоков в соответствующем сечении конструкции узла по значениям параметров (давление, состав и температура продуктов сгорания в ядре газового потока и в пристеночном слое) на установившемся режиме эксплуатации /13/.

     Время выхода рассматриваемых конструкций на установившийся тепловой режим соизмеримо и может оказаться даже большим времени их работы при эксплуатации. В этих условиях задача определения теплового состояния в период работы сводится к расчету прогрева их под воздействием высокотемпературных продуктов сгорания /1, 2/.

Рассмотрим следующую схему корпуса камеры сгорания.














На поверхности в сечении располагается по две точки замера, расположенных в диаметрально противоположных точках периметра корпуса.

В сечении I - I корпуса сопла можно представить в виде однослойной неограниченной пластины, двухслойной - сечение II - II (Рис.1).

Расчетные схемы элементов конструкции представлены на рисунке 2 и 3.

 
 



















                     

        









Обратная тепловая задача для пластины формулируется следующим образом. Требуется по замерам температуры   и теплового потока  к пластине (рис.2) при X = 0 найти изменения температуры и теплового потока на поверхности X = 1.

    Решение обратной тепловой задачи в такой постановке целесообразно построить с использованием решения задачи Коши /3/.

    В пространстве переменных    задана некоторая   гладкая     поверхность  Г.   С каждой точкой  связывается некоторое направление , некасательное  Г.


    В окрестности поверхности  Г  требуется найти решение уравнения.

                                                                                            


 удовлетворяющего условиям Коши


                   

                                     

                                                                                                           

где    - безразмерные время и координата.

    Нетрудно убедиться, что решение задачи (1), (2), записанное в виде:

      

                                                                        (3)                                                                        


и является искомым /10/.

    Утверждения о существовании решения (3), об аналитичности этого решения и его единственности в классе аналитических функций составляют содержание известной классической теоремы Коши - Ковалевской /11/.

    Решение (13) при заданных      и     позволяет найти искомые изменения температуры   и теплового потока  Однако в такой интерпретации решения (3), где функции  известны из эксперимента  с некоторой заданной погрешностью, необходимо учитывать и тот факт, что вычисление операторов дифференцирования     неустойчиво к возмущениям в исходных данных /12/.

Таким образом, имеем типичную некорректную задачу, для построения устойчивого решения которой необходимо построение регуляризирующих алгоритмов.

Сохраним в решении (3) конечное число слагаемых  N. Введем обозначения

 

                                                                                                                                      (4)                                                                                        


    Интегрируя (4) получим систему интегральных уравнений Вольтерра первого рода:

                 

              ,                                                                           (5)                                                          


где  k =1, 2, ... , N.                               

    Соотношения для теплового потока в (3) записывается аналогично. В дальнейшем будем считать, что на поверхности  X = 0 теплосъем отсутствует, то есть стенка теплоизолирована. Тогда решение (3) с учетом обозначений (4) записывается в виде

 

                                                                  (6)


    Таким образом, граничные условия при X = 1 восстанавливаются соотношением (6), в котором функции    находятся  из решения интегральных уравнений (5)


                                                                                                  (7)

                                                     

где правая часть задается приближенно, то есть


                 


Здесь  - числовой параметр, характеризующий погрешность правой части уравнения (7).

    Задача (7) является, в общем случаи некорректно поставленной /12/. Наиболее распространенным в настоящее время эффективным регуляризующим алгоритмом для ее решения является алгоритм, основанный на минимизации функционала А.Н.Тихонова /12/.


                                                                                (8)


С последующим выбором параметра регуляризации  по так называемому принципу невязки.

    Например, если  - какая - либо экстремаль функционала (8), реализующая его глобальный минимум при заданном  и фиксированном , то числовой параметр   определяется из условия


                                                                                                                    (9)


    Регуляризующий алгоритм (7) - (9) подробно изучен в /12/ и обладает устойчивостью к малым возмущениям правой части (7).

    Правая часть уравнения (7) при решении формировалась следующим образом.  Функция   характеризующая изменение температуры поверхности, задавалась таблицей.  Начальные условия для    1, 2, … , N-1) находились из соотношения  /3/:


                                                                                                                       (10)


где ,  - распределение температуры, заданное в начальный момент времени. Откуда для равномерного распределения температуры в начальный  момент времени имеет

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать