Решение обратных задач динамики

 (1.5)


где постоянные , должны быть такими, чтобы выполнялись граничные условия.

Пусть для определенности корни таковы, что


, ,  


В этом случае постоянные  в (1.5) должны быть равными нулю в силу того, что согласно (1.2) при  функция  и ее производные стремятся к нулю. Таким образом, выражение для экстремали  должно быть


. (1.6)


Однако известно, что , определяемая формулой (1.6), есть решение одного дифференциального уравнения n-го порядка


 (1.7)


Коэффициенты  этого уравнения однозначно выражаются через корни  по формулам Виета.

Отметим, что начальными условиями для уравнения (1.7) являются (1.1).

Из приведенного анализа следует, что экстремаль  интеграла  при граничных условиях (1.1), (1.2) является решением однородного дифференциального уравнения (1.7), порядок которого равен порядку оптимизируемой системы. На этом основании можно заключить, что параметрическая оптимизация системы по критерию минимума интегральной квадратичной оценки  выполняется из условия, чтобы выходная переменная x(t) системы в свободном движении изменялась во времени по предписанному закону, определяемому дифференциальным уравнением (1.7). Это в свою очередь означает, что задачу параметрической оптимизации можно рассматривать как обратную задачу динамики, формулируемую следующим образом: динамическая система заданной структуры имеет варьируемые параметры ; требуется найти такие значения этих параметров, при которых движение системы проходит по предписанной траектории, определяемой дифференциальным уравнением вида (1.7).

Практически не всегда оказывается возможным провести параметрический синтез системы из условия, чтобы ее выходная переменная x(t) в точности была равна переменной , которая является экстремалью минимизируемого функционала . В большинстве случаях параметры  ищутся из условия наилучшего (в каком-либо смысле) приближения x(t) и . Очень часто в качестве меры приближения используют определенные интегралы:




и другие. Здесь  - отклонение выходной переменной оптимизируемой системы от экстремальной кривой ; ,  - производные по времени; ,  - положительные числа. Выражение (1.7) представляет собой, по сути дела, также интегральные оценки, записанные для отклонений траектории синтезируемой системы от назначенной.

В прикладных задачах параметрической оптимизации не всегда используются интегральные квадратичные оценки, порядок которых равен порядку дифференциального уравнения оптимизируемой системы. Очень часто параметрический синтез проводят по квадратичным оценкам первого и второго порядка. В таких случаях параметры системы определяются из условия, чтобы выходная переменная x(t) приближалась к решению дифференциального уравнения первого или соответственно второго порядка.

Таким образом, требование оптимальности системы по переходному процессу в смысле минимума интегральной квадратичной оценки  равносильно требованию, чтобы выходная переменная системы в ее свободном движении изменялась в соответствии с решением однородного дифференциального уравнения порядка m.

3. Применение спектрального метода для решения обратных задач динами


Рассмотрим решение спектральным методом обратной задачи динамики в следующей постановке.

Известна система автоматического управления (регулирования), которая может быть как стационарной, так и нестационарной, и работа которой описывается следующим дифференциальным уравнением:

 (2.1)


где

 - сигнал на выходе системы;

 - сигнал на входе системы;

 - коэффициенты дифференциального уравнения, являющиеся функциями времени.

При этом неизвестны некоторые параметры настройки системы управления, которые необходимо определить в процессе решения задачи. Обозначим множество этих параметров через  где  - их число. Тогда коэффициенты дифференциального уравнения будут зависеть от  и, следовательно можно записать;


 (2.2)


Задан эталонный сигнал на интервале  или его спектральная характеристика, который необходимо получить на выходе системы (2.2). В общем случае могут быть заданы ненулевые начальные условия:


 (2.3)


Для заданных дифференциального уравнения (2.2), эталонного выходного сигнала  и начальных условий (2.3) необходимо определить входной сигнал  и искомые сигнала на выходе получили бы сигнал, максимально параметры настройки  такими, что при подачи на вход системы автоматического управления найденного входного в известном смысле приближенный к эталонному.

В качестве меры близости реального сигнала на выходе системы (2.2), (2.3) к эталонному сигналу  на интервале  примем следующий функционал


  (2.4)


Неизвестный входной сигнал будем искать в форме его спектрального разложения в ряд по некоторому базису ортонормированных функций ;



где коэффициенты , неизвестны и их необходимо определить.

Следовательно входной сигнал будет зависеть от времени  и от множества параметров  Тогда дифференциальное уравнение (2.2) можно записать в следующей виде


 (2.5)


Интегрируя уравнение  раз с учетом начальных условий, получим


 (2.6)


Воспользовавшись справедливым для любой непрерывной функции тождеством



равенство (2.6) можно переписать в виде


 (2.7)


Интегрируя полученное равенство (2.7) по частям и применяя формулы



получим


 (2.8)


где



Уравнение (2.8) представляет собой уравнение Вольтера 2-го рода. Преобразуем его к интегральному уравнению Фредгольма 2-го рода на интервале исследования :


 (2.9)


где



Таким образом, получены две эквивалентные формы описания системы: дифференциальное уравнение (2.2) с начальными условиями (2.3) и интегральное уравнение (2.9). Функция  в выражении (2.9) представляет собой полином, коэффициенты которого зависят от начальных условий (2.3) и от множества  искомых параметров настройки системы автоматического управления (регулирования). Перепишем , изменив порядок суммирования



Введем следующие обозначения:



Тогда полином  можно записать следующим образом



где - вектор-столбец начальных условий; - вектор-столбец полиномов .

Рассмотрим левую часть уравнения (2.9). Представим функции, входящие в нее, в виде разложений в ряд по ортонормированному базису .

Имеем


, (2.10)


где  - спектральная характеристика выходного сигнала , элементы которой определяются из соотношения


 (2.11)


где  - квадратная матрица размерностью , элементы которой определяются из выражения


Подставив полученные разложения (2.10) и (2.11) в левую часть уравнения (2.9) и учитывая, что , где - единичная, в силу ортонормированности базисных функций, получим


 (2.12)


где  - матрица спектральной характеристики инерционной части системы размерностью .

Сделаем аналогичные преобразования для правой части уравнения (2.9).


, (2.13)


где  - спектральная характеристика сигнала на входе системы, элементы которой определяются из соотношения


 (2.14)


где  - квадратная матрица размерностью  спектральной характеристики форсирующей части системы, элементы которой определяются из выражения


 (2.15)


где  - матрица размерностью  элементы которой определяются из соотношения



Подставляя разложения (2.13), (2.14) и (2.15) в (2.9) и делая соответствующие преобразования, получим


 

 (2.16)


Таким образом, уравнение (2.9) с учетом (2.12) и (2.16) можно переписать в следующем виде


 (2.17)


Рассмотрим теперь функционал (2.4). Имеем



Так как , то последние выражение можно записать в следующем виде


 (2.18)


или



где


. (2.19)


Здесь спектральная характеристика эталонного сигнала  или задана или, в случае задании эталонного сигнала , определяется из выражения


, .


Таким образом, задача определения входного сигнала  (точнее множества ) и множества  неизвестных параметров настройки системы управления (2.2), (2.3) сводиться к задаче безусловной минимизации функционала (2.18) по элементам множеств  и , т.е.


.


На рисунке 2.1 представлена структурная схема алгоритма решения поставленной задачи.


Рис 2.1 Структурная схема алгоритма решения обратной задачи динамики спектральным методом

4. Практическая часть


Рассмотрим отдельный блок системы самонаведения, структурная схема которого представлена на рисунке 1.


Рис. 1. Структурная схема системы


Задан эталонный закон изменения угла , график которого представлен на рисунке 2.


Рис. 2. График эталонного закона изменения угла


Задача формулируется следующим образом. Необходимо найти управление  такое, которое обеспечит на выходе сигнал , максимально близкий к заданному эталонному закону.



5. Практическая часть


Данная задача относится к разряду неккоректных и мы будем решать её с применением оптимизационных методов.

Для решения данной задачи воспользуемся методом матричных операторов. В этом случае структурную схему можно представить в следующем виде (рис. 3).


Рис. 3. Структурная схема системы в операторной форме


В качестве ортонормированной системы использовалась система функций Уолша с удержанием  элементов. В этом случае матричные операторы основных элементов системы будут следующими (представлены подматрицы размерностью ):


;



;

;

.


Спектральная характеристика сигнала  следующая (представлены первые пять элементов):


.


Решение поставленной задачи будем выполнять в следующие два этапа.

1. Поскольку известен эталонный выходной сигнал, то из уравнения


      


можно найти спектральную характеристику эталонного сигнала на выходе нелинейного элемента. Решая уравнение относительно коэффициентов  с использованием метода Гаусса-Ньютона получены следующие числовые значения коэффициентов:

.   


График соответствующего сигнала представлен на рисунке 4.


Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать