Роль многократной ионизации в действии излучения

Роль многократной ионизации в действии излучения

A. Ope

РОЛЬ МНОГОКРАТНОЙ ИОНИЗАЦИИ В ДЕЙСТВИИ ИЗЛУЧЕНИЯ

Введение. Шестнадцать лет назад Платцман блестяще рас­смотрел вопрос о возможной роли многократной ионизации в действии излучения. К сожалению, к проблеме изучения действи­тельной роли, которую играет переданная энергия, вызывающая образование многократно заряженных ионов, приступить очень трудно и она остается довольно неясной.

Механизмы ионизации. Существуют различные процессы, кото­рые могут привести к образованию многократно заряженных ионов. В этом обзоре мы не будем обсуждать такие процессы, как одновременный электронный захват и ионизацию «тяжелыми» положительными частицами (см., например, [2], а также следую­щую статью Кистемейкера), ионизацию при мезонном захвате [3] и т. д. Блестящий анализ ионизации, связанной с различными процессами ядерного распада, был недавно опубликован Вексле-ром [4].

Мы обсудим здесь кратко многократную ионизацию, обуслов­ленную смежными ионизациями, и многократное испускание сла­бо связанных электронов по существу в «одном акте». Основная часть настоящей статьи будет посвящена многократной ионизации, связанной с первоначальной ионизацией внутренних оболочек.

Смежные ионизации. Гипотеза, согласно которой определен­ный тип эффектов облучения может обусловливаться смежными ионизациями, не нова. Напомним модель Ли — Кэтчесайда (пред­ставляющую интерес хотя бы с исторической точки зрения [5]), согласно которой каждая ионизирующая частица, которая пере­секает хроматиду в традесканции, может с большой вероятностью разрушить ее только в том случае, если в пределах диаметра хро-матиды эта частица производит 15—20 актов ионизации. Анало­гично в ранних попытках объяснить радиационные повреждения сухих белков, исходя из предположения о «прямом действии», допускалось, что для инактивации одной молекулы иногда необ­ходимо, чтобы при прохождении одной частицы наступало нес­колько ионизации [6]. Па основании этих рассуждений, а также анализа более общей модели Ховарда-Фландерса [7], были выпол­нены расчеты вероятности того, что в пределах данного расстоя­ния образуется некоторое число ионов, причем допускались ста­тистические флуктуации как чдсдз ионных скорлений, так и числа ионов в каждом из них [8]. Эти расчеты, основанные на данных об ионизации газа, следует, однако, пересмотреть, чтобы учесть прогресс наших знаний о характеристических потерях энергии электронами в конденсированных средах [9]. Согласно гипотезе Хатчинсона, на одну первичную ионизацию требуется меньшая энергия, чем обычно считалось [10], т. е. для инактивации фермен­тов, облучаемых в сухом состоянии в отсутствие кислорода (но не в его присутствии), требуется, как правило, многократная иони­зация. Наконец, механизм инактивации, предложенный Плат-цманом и Франком и заключающийся в разрыве вторичных связей волной поляризации, предполагает необходимость не­большого числа ионизации в самой молекуле белка или вблизи нее [11].

По-видимому, вопрос о пространственных корреляциях возник­ших зарядов относится к важным. Количественные характеристи­ки ионных скоплений еще не установлены. Кроме того, не суще­ствует резкого экспериментального различия между «смежными ионизациями» и состоянием, возникающим при различных видах многократной ионизации, обсуждаемых ниже.

«Одноактное» испускание внешних электронов. Для физиков-экспериментаторов и теоретиков объяснение «одноактного» испус­кания двух или большего числа слабо связанных атомных или молекулярных электронов под действием, скажем, удара электро­на до сих пор представляется очень сложным.

К счастью, возможные детали механизма многократного ис­пускания слабо связанных электронов для наших целей имеют лишь второстепенный интерес. К сожалению, эмпирические дан­ные о вероятности (сечении) тг-кратной ионизации (п ]> 2) до сих пор чрезвычайно скудны [12, 13]. Однако основная масса «вторичных» электронов, создаваемых высокоэнергетическим из­лучением, имеет энергию, при которой сечение даже наиболее вероятной двукратной ионизации мало. Поэтому при обычных условиях облучения значение полного выхода такой двукратной ионизации в 103 раз меньше значения выхода для однократных ионизации [1]. Кроме того, химическая активность этих двукрат­но ионизированных атомов не должна быть особенно большой. Аналогичной ионизацией более высокой кратности можно полно­стью пренебречь. Что же касается первичных ионизации, то в не­которых атомарных газах около 10% всех ионизации, создавае­мых электронами средней энергии, могут оказаться двукратными и около 1% —трехкратными [12, 13].

Внутриоболочечная ионизация. Общие соображения. Особен­ный интерес представляет механизм многократной ионизации с потерей электронов внутренними, глубоколежащими оболоч­ками, за которой следует — вероятно, через 10~14 — 10~15 сек — эмиссия других электронов с последующей перестройкой атомного или молекулярного электронного облака. Этот механизм пред­полагает выделение болыноц порции энергии, способной вызвать

сильные локальные нарушения и затем быстро преобразовать­ся в потенциальную энергию молекулы. Даже в кислороде— легком атомо — по крайней мере 530 эв остается в ионе при ис­пускании одного K-электрона, что более чем в 10 раз превышает энергию, необходимую для удаления двух валентных электронов.

Сечения однократной внутриоболочечной ионизации можно довольно точно вычислить из теории. Число первичных дву­кратных или многократных внутриоболочечных ионизации очень мало. (Даже если эти ионизации маловероятны, они сыграли известную роль в интерпретации Kα-сателлитов в рентгеновском спектре [14].) Теоретический выход внутриоболочечной иониза­ции в реальных условиях облучения был получен Дурупом и Платцмашш [15, 10] путем расчета сечений с использованием теории Спенсера и Фано [17]. Наконец, процессы, вызываемые образованием внутриоболочечных вакансий, интенсивно изуча­лись как физиками, так и химиками, занимающимися ядерной химией [4, 18].

Процессы, непосредственно следующие за образованием внут­риоболочечных вакансий.

Изолированные атомы. В тяжелом атоме, электро­ны которого располагаются на многочисленных оболочках и подоболочках (энергетических уровнях), перестройка может проис­ходить громадным числом способов, в том числе путем как радиа­ционных, так и нсрадиационных переходов, причем последние могут вызывать значительную потерю электронов. Образование внутриоболочечной вакансии в атоме Хе (Z54) иногда сопро­вождается ливнем, состоящим из более чем 20 электронов [19], а наиболее вероятное их число равно 8 [19, 201 (см. также [13]). Этот процесс представляет собой каскад простых переходов Оже, в'каждом из которых один электрон переходит на внутреннюю орбиту, а энергия перехода идет на выбивание другого электрона.

Однако такая картина формирования заряда не полна. В ос­новном закопченная картина была недавно создана Карлсоном и Краузе [21] для простейшего случая атома Ne (Z = 10), т. е. легкого атома, подвергнутого рентгеновскому облучению. Не­которые основные ее особенности заключаются в следующем.

а)   В тот  момент,  когда  быстрый фотоэлектрон  вылетает  из K-оболочки Ne, поле, в котором движутся оставшиеся электроны, претерпевает   внезапное   возмущение,   приводящее   к   «выбросу» одного  или нескольких   электронов  примерно   в   16%   случаев.

б)  Вероятность последующего процесса  Оже,  в котором ис­пускается два  электрона (или большее их число), равна прибли­зительно 8% («двойной» процесс Оже может иметь ту же природу, что и в пункте а) [22].

Если бы не было таких механизмов эмиссии добавочных элект­ронов, следовало бы предсказать только образование Ne1+ (ва­кансия в k-оболочке заполнена в результате радиационного перехода) и Ne2+ (простой переход Оже), Однако на самом деле наблюдается около 22% Ne3+, около 3% Ne4+ и 0,3% Ne6+. Сход­ная ситуация должна наблюдаться для атомов О, N и С [20].

Изучался также случай не столь легкого атома Аг (Z = 18) [13, 23]. Полученные результаты можно в известном приближении применить к таким биологически важным атомам, как S (Z = 16) и Р (Z = 15) [20]. При К-ионизации аргона примерно в 40% случаев теряется пять электронов или более; наиболее вероятна потеря четырех электронов. Что касается количества выделившей­ся энергии, то при К-ионизации ее величина в Аг, S и Р равна соответственно 3,2, 2,5 и 2,1 кэв [24]. В этих атомах ионизация L-оболочки также сопровождается (≈ 100%) одним или несколь­кими процессами Оже, иногда комбинированными с «выбросом» электрона. Таким образом, в Аr вероятность ионизации L-обо­лочки, приводящей к образованию ионов с зарядом три и боль­ше, превосходит 40%. Ионизация L-оболочки падающей частицей обычно значительно более вероятна, чем ионизация .К-оболочки; исключением служит фотоэлектрический эффект при энергиях фотона, превышающих порог ионизации К-оболочки. Энергии ионизации L-оболочки, конечно, меньше и равны 290—245 эв, 190—163 эв и 150—128 эв для Аr, S и Р соответственно [24].

Исследования, проведенные с помощью рентгеновского об­лучения, дали возможность установить эмпирические правила, посредством которых можно оценить средний заряд, возникаю­щий при образовании вакансий в результате атомной перестрой­ки в любой оболочке любого изолированного атома [20].

Изолированные молекулы. Можно ожидать, что в молекулах во время конечных стадий перестройки будет осуществляться быстрый внутримолекулярный перенос заряда. Давно известно, что в случаях, когда внутренние вакансии создаются включен­ными в молекулу радиоактивными ядрами [4], в ней могут прои­зойти сильные нарушения. Более точная информация была не­давно получена в исследованиях Карлсона и Уайта [25] с исполь­зованием рентгеновского облучения. Изображенный на рис. 1 спектр зарядов показывает, что при ионизации внутренней обо­лочки йода в газообразном CH3J нейтральные фрагменты обра­зуются редко (отношение атомарных ионов отражает долю дан­ных атомов в молекуле). Кроме того, мы видим, что происходит целый ряд распадов, но наиболее вероятна реакция

CH3J + рентгеновские лучи- С2+ + 3Н+ + J5+ + 10 электронов. (1)

В этом случае три электрона переносятся, по-видимому, из метильной группы к йоду, поскольку следует ожидать, что сво­бодный атом йода имеет заряд +8, так как этот элемент (Z53) находится рядом с Хе. Таким образом, два «добавочных» элект­рона, по-видимому, теряются при каком-то молекулярном процес­се автоионизации. Примерно за 10~14 сек молекула превращается в крошечный рой положительных ионов, который затем расши­ряется. Измерялся также, спектр энергий ядер ртдачи. Для C2+40 его максимум находится примерно при 40 эв. Для Н+ и J5+ он лежит приблизительно при 34 и 9 эв соответственно. Эти энергии относятся к области химии «горячих атомов» или «высоких ско­ростей». Они хорошо согласуются с моделью «кулоновского взры­ва». Получены, однако, указания на то, что уже в процессе по­явления заряда имеет место небольшое расхождение ионов [25]. Конденсированная среда. Разрушение молекул в результате эффекта Оже с последующим кулоновским отталкиванием было

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать