Сила тяжести. Невесомость

где  m1 и m2 - массы двух частиц, R - расстояние между ними, а G - гравитационная постоянная, которая может быть измерена экспериментально и для всех тел имеет одно и то же численное значение.

            Это выражение определяет величину силы тяготения, с которой одна частица действует на другую, находящуюся от нее на расстоянии  R. Для двух не точечных, но однородных тел это выражение правильно описывает взаимодействие, если          - расстояние между центрами тел. Кроме того, если протяженные тела малы по сравнению с расстояниями между ними, то мы не намного ошибемся, если будем рассматривать  тела как точечные частицы (как это имеет место для системы Земля - Солнце).

            Если нужно рассмотреть силу гравитационного притяжения, действующую на данную частицу со стороны двух или нескольких других частиц, например силу, действующую на Луну со стороны Земли и Солнца, то необходимо для каждой пары взаимодействующих частиц воспользоваться формулой закона всемирного тяготения, после чего векторно сложить силы, действующие на частицу.

            Величина постоянной G должна быть очень мала, так как мы не замечаем никакой силы, действующей между телами обычных размеров. Сила, действующая между двумя телами обычных размеров, впервые была измерена в 1798г. Генри Кавендишем - через 100 лет после того, как Ньютон опубликовал свой закон. В настоящее время принято считать, что эта постоянная равна G = 6,67*10-7Н*м2/кг2.

            Итак, гравитационные силы вездесущи и всепроникающи. Почему же мы не ощущаем притяжения большинства тел? Если подсчитать, какую долю от притяжения Земли составляет, например, притяжение Эвереста, то окажется, что лишь тысячные доли процента. Сила же взаимного притяжения двух людей среднего веса при расстоянии между ними в один метр не превышает трех сотых миллиграмма. Так слабы гравитационные силы. Тот факт, что гравитационные силы, вообще говоря, гораздо слабее электрических, вызывает своеобразное разделение сфер влияния этих сил. Гравитационные силы становятся ощутимыми, а порой и грандиозными, когда во взаимодействии фигурируют такие огромные массы, как массы космических тел: планет, звезд и т.д. Так, Земля и Луна притягиваются с силой примерно в 20 000 000 000 000 000 тонн. Даже такие далекие от нас звезды, свет которых годы идет от Земли, притягиваются с нашей планетой с силой, выражающейся внушительной цифрой, - это сотни миллионов тонн. 

 Итак, Галилей утверждал, что все тела, отпущенные с некоторой высоты вблизи поверхности Земли, будут падать с одинаковым ускорением g (если пренебречь сопротивлением воздуха). Сила, вызывающая это ускорение называется силой тяжести. Применим к силе тяжести второй закон Ньютона, рассматривая в качестве ускорения a ускорение свободного падения g. Таким образом, действующую на тело силу тяжести можно записать как:

Fg=mg

Эта сила направлена вниз, к центру Земли.

Т.к. в системе СИ g = 9,8, то сила тяжести, действующая на тело массой 1кг, составляет 9,8 Н.                          .

Применим формулу закона всемирного тяготения для описания силы тяжести - силы тяготения между землей и телом, находящимся на ее поверхности. Тогда m1 заменится на массу Земли М3 , а r - на расстояние до центра Земли, т.е. на радиус Земли R3. Таким образом, получим:

                                       Mз*m

                           F = G-----------

                                        Rз2

Где m - масса тела, находящегося на поверхности Земли. Из этого равенства следует, что:

                                           Fт                Мз

                                    g = ---- = G -----

                                           mт                Rз2

Иными словами ускорение свободного падения на поверхности земли g определяется величинами Мз и RЗ.

На Луне, на других планетах, или в космическом пространстве сила тяжести, действующая на тело одинаковой массы, будет различна. Например, на Луне величина g представляет всего лишь одну шестую g на Земле, и на тело массой 1 кг действует сила тяжести, равная всего лишь 1,7 Н.

До тех пор, пока не была измерена гравитационная постоянная G, масса Земли оставалась неизвестной. И только после того, как G была измерена, с помощью соотношения удалось вычислить массу земли. Это впервые проделал сам Генри Кавендиш. Подставляя в формулу ускорение свободного падения значение g=9,8м/с и радиуса земли rз=6,38*106 ,получаем следующее значение массы Земли: 6*1024кг.

Значения ускорения свободного падения g в разных точках Земли несколько различаются. Из формулы g = Gm3 можно увидеть, что величина g должна быть меньше, например, на вершинах гор, чем на уровне моря, поскольку расстояние от центра Земли до вершины горы несколько больше. Действительно, этот факт установили экспериментально. Однако формула g=Gm3/r32 не дает точного значения g во всех точках, так как поверхность земли не является в точности сферической: на ее поверхности не только существуют горы и моря, но также имеет место изменение радиуса Земли на экваторе; кроме того, масса земли распределена неоднородно; вращение Земли также влияет на изменение g.

Методы разведки при помощи маятников и сверхточных весов называют гравитационными. Они имеют большое практическое значение, в частности для поисков нефти. Дело в том, что при гравитационных методах разведки легко обнаружить подземные соляные купола, а очень часто оказывается, что где есть соль, там и нефть. Причем нефть лежит в глубине, а соль ближе к земной поверхности. Методом гравитационной разведки была открыта нефть в Казахстане и в других местах.

 

***

Вместо того чтобы тянуть тележку с помощью пружины, ей можно придать ускорение, прикрепив перекинутый через блок шнур, к противоположному концу которого подвешивается груз. Тогда сила, сообщающая ускорение, будет обусловлена весом этого груза. Ускорение свободного падения опять таки сообщается телу его весом.

В физике вес - это официальное наименование силы, которая обусловлена притяжением предметов к земной поверхности - «притяжением силы тяжести». То обстоятельство, что тела притягиваются по направлению к центру Земли, делает такое объяснение разумным.

Как бы его не определили, вес - это сила. Он ничем не отличается от любой другой силы, если не считать двух особенностей: вес направлен вертикально и действует постоянно, его невозможно устранить.

Чтобы непосредственно измерить вес тела, мы должны воспользоваться пружинными весами, проградуированными в единицах силы. Поскольку это зачастую сделать неудобно, мы сравниваем один вес с другим при помощи рычажных весов, т.е. находим отношение.

Предположим, что тело Х притягивается в 3 раза сильнее, чем эталон массы. В этом случае мы говорим, что земное притяжение, действующее на тело Х равно 30 ньютонам силы, что означает, что оно в 3 раза больше земного притяжения, которое действует на килограмм массы. Нередко путают понятие массы и веса, между которыми имеется существенное различие. Масса - это свойство самого тела (она является мерой инертности или его «количества вещества»). Вес же - это сила, с которой тело действует на опору или растягивает подвес (вес численно равен силе тяжести, если опора или подвес не имеют ускорения).

Если мы при помощи пружинных весов измерим вес какого-нибудь предмета с очень большой точностью, а потом перенесем весы в другое место, то обнаружим, что вес предмета на поверхности Земли несколько меняется от места к месту. Мы знаем, что вдали от поверхности Земли, или в глубине земного шара, вес должен быть значительно меньше.

Меняется ли масса? Ученые, размышляя над этим вопросом, давно пришли к выводу, что масса должна оставаться неизменной. Даже в центре Земли, где тяготение, действуя во всех направлениях, должно давать нулевую результирующую силу, тело по-прежнему имело бы ту же самую массу.

Таким образом, масса, оцениваемая по трудности, которую мы встречаем при попытке ускорить движение маленькой тележки, одна и та же всюду: на поверхности Земли, в центре Земли, на Луне. Вес, оцениваемый по удлинению пружинных весов (и ощущению в мускулах руки человека, держащего весы), будет значительно меньше.

            Вес тела, который мы обозначим буквой Р, по модулю равен силе тяжести:

                                                            P = m*g

            Но это не значит, что вес тела и сила тяжести, приложенная к нему, одно и то же.

            Сила тяжести – это гравитационная сила, приложенная к телу. Вес тела – это сила упругости, приложенная к подвесу.

            Представим себе, что пружину с подвешенным к ней грузом держат в руках. По шкале пружинных весов можно отсчитать вес тела. Если рука, держащая весы, покоится относительно Земли, весы покажут, что вес тела по модулю равен силе тяжести mg. А теперь представим себе, что весы выпустили из рук и они вместе с грузом свободно падают. Легко заметить, что при этом стрелка весов устанавливается на нуле, показывая, что вес тела стал равным нулю. И это понятно. При свободном падении и весы и груз движутся с одинаковым ускорением, равным g. Нижний конец пружины не увлекается грузом, а сам следует за ним, и пружина не деформируется. Поэтому нет силы упругости, которая действовала ба на груз. Значит, и груз не деформируется и не действует на пружину. Вес исчез! Груз, как говорят, стал невесомым.

Невесомость объясняется тем, что сила всемирного тяготения, а значит, и сила тяжести сообщают грузу и пружине  одинаковое ускорение g. Поэтому всякое тело, на которое действует только сила тяжести или вообще сила всемирного тяготения, находится в состоянии невесомости.  Именно в таких условиях находится всякое свободно падающее тело.

Невесомость совсем не редкое для людей состояние. В таком состоянии находится прыгун с момента отрыва от  Земли и до момента приземления, пловец, прыгающий с вышки до момента соприкосновения с водой.


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать