Часто бывает удобно характеризовать ритм числом колебаний в единицу времени или же частотой колебаний
f=. (1)
При теоретическом анализе колебаний более удобной часто бывает угловая частота ω=2πf=2π/Т.
6. Подстройка ритмов: захват фаз и частот
Два неидентичных осцилляторов, которые, взятые по отдельности, имеют различные периоды, при наличии связи подстраивают свои ритмы и начинают демонстрировать колебания с общим периодом. Это явление часто и называют в терминах совпадения частот их захватом. Произойдет это или нет, т. е. синхронизуются ли они, зависит от двух факторов:
1. Сила связи. Этот параметр характеризует, насколько слабо или сильно взаимодействие;
2. Расстройка по частоте. Расстройка частот Δf=f1– f2 характеризует, насколько различны осцилляторы. Представим себе следующий эксперимент. Пусть собственные частоты двух невзаимодействующих осцилляторов f1 и f2. Свяжем осцилляторы и измерим частоты F1 и F2 связанных систем. Мы можем выполнить такие измерения для различных параметров расстройки и получить зависимость ΔF=F1–F2 от Δf [1] (pис. 2).
Эта зависимость типична для взаимодействующих автоколебательных систем, независимо от их природы (механической, химической, электронной, и т. д.). Анализ показывает, что, если рассогласованность автономных систем не слишком велика, то частоты двух систем становятся равными, или захваченными, т. е. наступает синхронизация. В общем случае ширина области синхронизации возрастает с увеличением силы связи [3].
Рис. 2. График «разность наблюдаемых частот - расстройка» для некоторой фиксированной силы связи. Разность частот ΔF двух связанных осцилляторов изображена как функция расстройки Δf несвязанных систем. В определенном диапазоне расстроек частоты связанных осцилляторов идентичны (ΔF=0), что указывает на синхронизацию.
Более детальное рассмотрение синхронных состояний показывает, что синхронизация двух автоколебательных систем может возникнуть в двух формах. Чтобы описать эти режимы, введем ключевое понятие теории синхронизации, а именно понятие фазы осциллятора [1]. Фаза понимается как величина, пропорциональная доле периода и возрастающая на 2π в течение одного цикла колебаний. Фаза однозначно определяет положение периодического осциллятора. Как и время, она параметризует сигнал внутри одного цикла.
φ(t) = φo + 2π (2)
Рассмотрим разность фаз двух автоколебательных систем. Если в результате синхронизации разность фаз φ1–φ2 близка к нулю, то такой режим называется синфазной синхронизацией. Если взглянуть на колебания осцилляторов с большой точностью, то можно выявить, что эти колебания не в точности совпадают, так что обычно говорят о фазовом сдвиге между двумя колебаниями. Этот фазовый сдвиг может быть очень мал, но он всегда присутствует, если две системы изначально имели разные периоды, или же разные частоты.
Если разность фаз синхронизованных осцилляторов близка к π, то говорят о синхронизации в противофазе.
Возникновение определенного соотношения между фазами двух синхронизованных автоколебательных систем часто называют захват фаз. Т. о. можно сформулировать основной признак синхронизации: будучи связанными, два осциллятора с изначально различными частотами и независимыми фазами подстраивают свои ритмы и начинают осциллировать на общей частоте [3]. Это также предполагает наличие определенного соотношения между фазами двух систем. Так, говорят, что фазы φ1 и φ2 захвачены в отношении n : m, если выполняется неравенство:
|nφ1 – mφ2| < constant (3)
Подводя итоги, можно сказать, что если в каком-либо эксперименте мы наблюдаем две переменные, которые кажутся изменяющимися синхронно, то это не обязательно означает, что мы наблюдаем синхронизацию. Чтобы назвать явление синхронизацией, мы должны быть уверены в том, что:
·
мы анализируем поведение автоколебательных
систем,
т.е. систем, способных генерировать собственные ритмы;
· системы подстраивают свои ритмы за счет слабого взаимодействия;
·
подстройка ритмов происходит в некотором
диапазоне расстроек между системами; в частности, если частота одного из
осцилляторов медленно изменяется, то вторая
система следует
за этим изменением.
Соответственно, одного наблюдения недостаточно, чтобы сделать вывод о наличии синхронизации. Синхронизация — это сложный динамический процесс, а не состояние [1].
7. Синхронизация: обзор различных случаев
Перечислим различные формы синхронизации без учета природы колебаний (т.е. генерируются ли они электронным устройством или живой клеткой) и природы связи (т.е. осуществляется ли она за счет механического соединения или диффузии реагентов химической реакции), т.е. остановимся на общих свойствах: являются ли колебания периодическими или нерегулярными; является ли связь взаимной или однонаправленной и т.д.Это не будет полной и строгой классификацией, а просто кратким обсуждением основных проблем теории синхронизации.
7. 1. Синхронизация внешней силой
Синхронизация была открыта Гюйгенсом как побочный результат его усилий по созданию высокоточных часов. В наши дни этот эффект используется для точного и недорогого измерения времени с помощью радиоуправляемых часов. В этом случае передаваемый по радио слабый сигнал от центральных высокоточных часов ежеминутно подстраивает ритм других часов, тем самым захватывая.
Похожая схема синхронизации была «реализована» природой для подстройки биологических часов, которые регулируют суточные (циркадные) и сезонные ритмы живых систем, от бактерии до человека.
7. 2. Ансамбли осцилляторов и колебательные среды
Во многих естественных ситуациях взаимодействуют более двух объектов. Если два осциллятора способны к подстройке ритмов, то можно ожидать такой способности и от большого числа осцилляторов. Такая система называется ансамблем взаимно связанных осцилляторов. При этом можно говорить о глобальной (каждый с каждым) связи. Бывают и другие ситуации, когда осцилляторы упорядочены в цепочки или решетки, где каждый элемент взаимодействует с несколькими соседями. Такие структуры типичны для созданных человеком систем, например, для решеток лазеров, но могут также встречаться и в природе. Эксперименты показывают, что соседние осцилляторы в цепочке часто подстраивают свои частоты и формируют синхронные кластеры.
Достаточно часто мы не можем выделить отдельный колебательный элемент внутри естественного объекта. Вместо этого мы должны рассматривать систему как непрерывную колебательную среду, где также возможна синхронизация.
7. 3. Фазовая и полная синхронизация хаотических осцилляторов
В наши дни широко известно, что автоколебательные системы, например нелинейные электронные цепи, могут генерировать довольно сложные, хаотические сигналы. Многие естественные системы также демонстрируют сложное поведение. Недавние исследования показывают, что при наличии связи такие системы также могут синхронизоваться. Конечно же, в этом случае нам необходимо уточнить понятие синхронизации, потому что совершенно не очевидно, как характеризовать ритм хаотического осциллятора. Иногда хаотические сигналы относительно просты, как, например, показанный на рисунке 3. Такой сигнал — «почти периодический». Можно считать, что он состоит из похожих циклов с изменяющейся амплитудой и периодом (который может быть грубо определен как интервал между соседними максимумами). Выбрав большой интервал времени τ, мы можем сосчитать число циклов в этом интервале Nτ, вычислить среднюю частоту
(4)
и взять ее в качестве характеристики хаотического колебательного процесса [4].
Рис.3. Пример хаотических колебаний.
С помощью средних частот мы можем описать коллективное поведение взаимодействующих хаотических систем точно так же, как и периодических. Если связь достаточно велика (например, для резистивно связанных электрических цепей это означает, что сопротивление должно быть достаточно мало), средние частоты двух осцилляторов становятся равными. Важно отметить, что совпадение средних частот не означает, что сигналы также совпадают. Оказывается, что слабая связь не оказывает влияния на хаотическую природу обоих осцилляторов, их амплитуды остаются нерегулярными и некоррелированными, в то время как частоты подстраиваются таким образом, что мы можем говорить о фазовом сдвиге между сигналами. Такой режим называется фазовой синхронизацией хаотических систем.
Очень сильная связь стремится сделать состояния обоих осцилляторов идентичными. Она влияет не только на средние частоты, но также и на хаотические амплитуды. В результате, сигналы совпадают (или почти совпадают) и наступает режим полной синхронизации.
Явление синхронизации может также наблюдаться в больших ансамблях взаимно связанных хаотических систем и в сформированных ими пространственных структурах [1].
8. Цепочки осцилляторов
8. 1. Синхронизация N связанных осцилляторов
Рассмотрим синхронизацию N связанных осцилляторов на примере электронных генераторов, связанных через емкость, индуктивность и сопротивление. Уравнения колебаний в такой системе имеют вид:
(i=1,2,...,N). (5)
Здесь xi – напряжения на входах усилителей, ωi – собственные частоты колебательных контуров, μi – превышения над порогом генерации, βij(1) – коэффициенты индуктивной связи, βi j(2) – коэффициенты емкостной связи, βij(3) – коэффициенты связи через сопротивление, (1 – γixi2) – функции, характеризующие нелинейные свойства усилителей.