Синхронные машины. Машины постоянного тока

Выводы, полученные при рассмотрении трех случаев нагрузки, можно распространить и на общий случай, когда –90° < ψ < 90°. При этом характерным является то, что отстающий ток (активно-индуктивная нагрузка) размагничивает машину, а опережающий ток (активно-емкостная нагрузка) подмагничивает ее.

Э.д.с. Е при работе генератора под нагрузкой можно рассматривать как сумму двух составляющих:


.                                                 (1.12)


Рис. 1.19 – Кривые распределения индукции в неявнополюсной машине и векторные диаграммы потоков и э. д. с. при различных углах ψ


Э.д.с. Еа пропорциональна потоку Фа, т.е. току 1а в обмотке якоря, поэтому ее можно рассматривать как э.д.с. самоиндукции, индуктированную в обмотке якоря, и представить в виде


,


где ха – индуктивное сопротивление синхронной машины, обусловленное потоком реакции якоря.

Явнополюсная машина. В этой машине воздушный зазор между статором и ротором не остается постоянным, так как он расширяется по направлению к краям полюсов и резко увеличивается в зоне междуполюсного пространства. По этой причине поток якоря здесь зависит не только от величины м.д.с. Fa якоря, но и от положения кривой распределения этой м.д.с. Fa = f (x) относительно полюсов ротора, так как одна и та же м.д.с. якоря в зависимости от ее пространственного положения создает различный магнитный поток. Так, например, при угле ψ = 0 (рис. 1.20, а), когда поток якоря направлен по поперечной оси машины, кривая распределения индукции Ba=Baq имеет седлообразную форму, хотя м.д.с. Fа якоря распределена синусоидально. При этом максимуму м.д.с. Fa соответствует небольшая индукция, так как магнитное сопротивление воздушного зазора максимально. При угле ψ = 90° (рис. 1.20, б), когда поток якоря направлен по продольной оси машины, кривая распределения индукции Ва = Bad расположена симметрично относительно оси полюсов. В этом случае индукция имеет большее значение, чем при ψ = 0, так как магнитное сопротивление воздушного зазора в данном месте невелико. Соответственно различные максимальные значения будут иметь и первые гармоники Bad1 и Ваq1 указанных кривых.


Рис. 1.20 – Кривые распределения м. д. с. реакции якоря и создаваемых ею индукций в явнополюсной машине


Чтобы избежать трудностей, связанных с изменением результирующего сопротивления воздушного зазора при различных режимах работы машины, при анализе работы явнополюсной синхронной машины следует использовать так называемый метод двух реакций. Согласно этому методу, м.д.с. Fa в общем случае представляют в виде суммы двух составляющих: продольной Fad = Fasinψ и поперечной Faq = Facosψ (рис. 1.21, а), причем Fa = Fad + Faq. Продольная составляющая Fad создает продольный поток якоря Фаd, индуктирующий в обмотке якоря э.д.с. Ead, а поперечная составляющая Faq – поперечный поток Фаq, индуктирующий э.д.с. Eaq, причем принимают, что эти потоки не оказывают влияния друг на друга. В соответствии с принятым методом ток якоря Iа, создающий м.д.с. Fа, также представляют в виде двух составляющих: продольной Id и поперечной Iq (рис. 1.21, б).


Рис. 1.21 – Разложение векторов м.д.с. и тока якоря на продольную и поперечную составляющие


Величину магнитных потоков Фаd и Фаq и индуктируемых ими э.д.с. Ead и Eaq можно определить по кривой намагничивания машины или по спрямленной характеристике (рис. 1.22). Однако кривая намагничивания строится для м.д.с. возбуждения Fв, имеющей не синусоидальное, а прямоугольное распределение вдоль, окружности якоря. Чтобы воспользоваться указанной кривой или спрямленной характеристикой, м.д.с. Fad и Faq следует привести к прямоугольной м.д.с. возбуждения Fв, т.е. найти их эквивалентные значения Fad' и Faq'.

Установление эквивалентных значений Fad' и Faq' производят на основании следующих соображений: м.д.с. Fad и Faq создают в воздушном зазоре машины индукции Bad и Ваq, распределенные вдоль окружности якоря так же, как и индукции, создаваемые м.д.с. Fа соответственно при углах ψ = 0 и ψ = 90о (см. рис. 1.20, а, б). Первые гармоники Bad1 и Baq1 кривых Bad = f(x) и Baq = f(x) образуют магнитные потоки


Фad=Fad/rм ad; Фaq= Faq/rм aq.


где rм ad и rм aq – магнитные сопротивления для соответствующих потоков, учитывающие не только форму воздушного зазора, но и синусоидальность кривой распределения м.д.с. Fad и Faq вдоль окружности якоря.

М.д.с. возбуждения создавала бы такие же потоки Фаd и Фаq при меньших величинах м.д.с. F'ad и F'aq:


; .


Рис. 1.22 – Векторная диаграмма потоков Фad и Фаq и э. д. с. Ead и Eaq (а) явнополюсной машины и их определение по характеристике холостого хода (б)


Из последних выражений можно найти коэффициенты реакции якоря kd и kq, характеризующие уменьшение эффективных значений м.д.с. якоря:


; .                            (1.13)


где rм.в–магнитное сопротивление для потока возбуждения, учитывающее форму воздушного зазора по продольной оси машины и прямоугольное распределение м.д.с. Fв вдоль окружности якоря. Чтобы определить коэффициенты kd и kq, необходимо знать, как распределяются вдоль окружности якоря индукции Bad и Baq, созданные продольной Fad и поперечной Faq составляющими м.д.с. якоря, и их первые гармоники Bad1 и Baq1. Для характеристики этого распределения используют коэффициенты формы поля реакции якоря по продольной kad и поперечной kaq осям, аналогичные по своей структуре коэффициенту формы поля обмотки возбуждения kв:


;                                          (1.14а)


где Badm1 и Baqm1–амплитуды первых гармоник реального распределения магнитной индукции; Badm и Baqm – максимальные значения индукций Bad и Baq вычисленные в предположении, что воздушный зазор между статором и ротором равномерный, равный его значению под серединой полюса.

Коэффициенты kad и kaq зависят от тех же параметров αi, δ/τ и δмакс/δ, что и коэффициент kв, причем (см. рис. 1.20) kaq < kad.

Из условий равенства первых гармоник индукций, созданных м.д.с. якоря F аd и эквивалентной ей м.д.с. возбуждения F'ad и соответственно Faq и F'aq, имеем kadFad = kвF'ad; kaqFaq = kвF'aq, откуда


; .                              (1.14б)


Коэффициенты kd и kq физически характеризуют уменьшение магнитного сопротивления для потока Фв по сравнению с потоками Фаd и Фаq Обычно kd= 0,8 ÷ 0,95; kq = 0,3 ÷ 0,65.

В машине с явно выраженными полюсами э.д.с. Е при работе генератора под нагрузкой можно представить как сумму трех составляющих:


.                                        (1.15)


Э.д.с. Ead и Eaq, индуктируемые продольным Фаd и поперечным Фaq потоками якоря, представляют собой по существу э.д.с. самоиндукции, так как сами потоки Фаd и Фаq создаются м.д.с. Fad и Faq, пропорциональные токам Id и Iq. Поэтому для ненасыщенной машины можно считать, что


; ,                                 (1.16)


где хаd и хаq–индуктивные сопротивления обмотки якоря, соответствующие полям продольной и поперечной реакций якоря, причем


xad/xaq=kad/kaq.                                                       (1.17)


Для машины с неявно выраженными полюсами м.д.с. якоря приводится к м.д.с. обмотки возбуждения по формуле


F'a=kdFa.


1.6 Векторные диаграммы синхронного генератора


При анализе работы синхронных машин обычно используют векторные диаграммы: при качественном–упрощенные диаграммы, справедливые для машин, в которых отсутствует насыщение, а при количественном–уточненные диаграммы.


Неявнополюсная машина. Для цепи якоря неявнополюсной синхронной машины можно написать уравнение


                                                    (1.18а)


или


,            (1.18б)


где Esa – э.д.с, индуктированная в обмотке якоря потоком рассеяния; xsa–индуктивное сопротивление, обусловленное этим потоком.

На рис. 1.23, а изображена векторная диаграмма, построенная по (1.18б), называемая диаграммой Потье. Эта диаграмма позволяет определить э. д. с. холостого хода Е0 с учетом насыщения машины, если заданы напряжение, ток нагрузки (по величине и фазе), характеристика холостого хода и параметры машины. Сначала по известным падениям напряжения строится вектор э. д. с.


.                                               (1.18)


Рис. 1.23 – Векторная диаграмма синхронной неявнополюсной машины (а) и определение э. д. с. по характеристике холостого хода (б)

Так как э.д. с. Е индуктируется результирующим потоком Фрез, который создается результирующей м.д. с.



по характеристике холостого хода (рис. 1.23, б) можно определить Fрез, соответствующую э.д. с. Е. Вектор  совпадает по фазе с вектором , а оба эти вектора опережают по фазе вектор Ė на 90°.

Зная  и параметры машины, можно найти м.д.с. возбуждения


,


а затем по характеристике холостого хода определить величину э.д. с. холостого хода Е0. Вектор Ė0 отстает от вектора  на 90°.

Если требуется перейти от режима холостого хода к режиму нагрузки, то построения производят в обратном порядке.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать