Сонячні батареї

У 1883 р. електрик з Нью-Йорка Чарльз Фріттс виготовив фотоелементи з селену, які перетворять світло у видимому спектрі в електрику і мають ККД 1-2%. (світлочутливі елементи для фотоапаратів до цих пір роблять з селену).

На початку 50-х років ХХ століття був винайдений метод Чохральського, який застосовується для вирощування кристалічного кремнію.

Перша сонячна батарея була створена в 1953 році вченими Національного аерокосмічного агентства США, які створили справжню сонячну батарею - пристрій, що безпосередньо перетворює енергію сонця в електрику.

Спочатку це була просто демонстраційна модель. Якогось практичного вживання тоді не передбачалося із-за дуже малої потужності перших сонячних батарей.

Але з'явилися вони дуже вчасно, для них незабаром знайшлося відповідальне завдання.

Людство готувалося зробити крок в космос. Задача забезпечення енергією численних механізмів і приладів космічних кораблів стала однією з першочергових. Існуючі акумулятори, в яких можна б було запасти електричну енергію, неприйнятно громіздкі і важкі. Дуже велика частина корисного навантаження корабля пішла б на перевезення джерел енергії, які, крім того, поступово витрачаючись, скоро перетворилися б на даремний громіздкий баласт. Найпринаднішим було б мати на борту космічного корабля власну електростанцію, бажано - що обходиться без палива. З цієї точки зору сонячна батарея виявилася дуже зручним пристроєм. На цей пристрій і звернули увагу вчені на самому початку космічної ери.

Вже третій радянський штучний супутник Землі, виведений на орбіту 15 травня 1958 року, був оснащений сонячною батареєю. А зараз широко розкриті крила, на яких розміщені цілі сонячні електростанції, стали невід'ємною деталлю конструкції будь-якого космічного апарату. Невеликі (менше 1 вата) фотоелектричні батареї живили радіопередавач американського космічного супутника «Авангард». Взагалі, космічні дослідження зіграли важливу роль в розвитку фотоелементів.

У 1954 р. в лабораторії компанії «Bell Telephone» синтезували силіконовий фотоелектричний елемент з ККД 4%, надалі ефективність досягла 11%.

Під час нафтової кризи 1973-74 рр. відразу декілька країн запустили програми по використанню фотоелементів, що привело до установки і випробування понад 3100 фотоелектричних систем лише в Сполучених Штатах. Багато хто з них до цих пір знаходиться в експлуатації.

Подальша історія розвитку технології фотоелементів:

1974 - перша аморфна кремнієва батарея;

1983 - перша електростанція на основі сонячних батарей з потужністю більш 1мегаватт;

1984 - США, електростанція на основі сонячних батарей потужністю 6,5 мегават;

1985 - перша сонячна батарея з коефіцієнтом корисної дії більше 20%;

1987 - перше серійне виробництво сонячних батарей в Європі;

1989 - сонячна батарея з коефіцієнтом корисної дії більше 30%;

2007 - дослідники з Делавера (США) створили сонячну батарею, яка володіє рекордною ефективністю - 42,8%. Батарея, виконана на основі полікристалічного кремнію містить унікальну оптичну систему, що розділяє світло на декілька пучків з різною енергією і спрямовує їх на відповідні приймачі.


Розділ 3. Сонячні батареї


3.1 Принцип роботи сонячної батареї


Напівпровідникові фотоелектричні елементи, що працюють на принципі перетворення світлової енергії сонячного випромінювання безпосередньо в електрику називають сонячними батареями.


Мал. 2. Схема роботи кремнієвої сонячної батареї:

1 - чистий монокристалічний кремній; 2 - «забруднений» кремній; 3 - акумулятор


Тонка пластина складається з двох шарів кремнію з різними фізичними властивостями. Внутрішній шар являє собою чистий монокристалічний кремній. Зовні він покритий дуже тонким шаром «забрудненого» кремнію, наприклад з домішкою фосфору. Після опромінення такої «вафлі» сонячними променями між шарами виникає потік електронів і утворюється різниця потенціалів, а в зовнішньому ланцюзі, що з'єднує шари, з'являється електричний струм.

При цьому генерується постійний струм. Енергія може використовуватися як напряму різними навантаженнями постійного струму, запасатися в акумуляторних батареях для подальшого використовування або покриття пікового навантаження, а також перетворюватися в змінний струм напругою 220 В для живлення різного навантаження змінного струму.

Вживання сонячних батарей стає ефективним при об'єднанні їх в єдину систему з такими пристроями, як акумулятори, контролери, інвертування.


3.2 Сонячні модулі


Сонячний модуль - це батарея взаємозв'язаних сонячних елементів, укладених під скляною кришкою. Фотоелектричну систему можна довести до будь-якого розміру. Власник такої системи може збільшити або зменшити її, якщо зміниться його потреба в електроенергії. У міру зростання енергоспоживання і фінансових можливостей, домовласник може додавати модулі (Додаток Г). Чим інтенсивніше світло, падаюче на фотоелементи і чим більше їх площа, тим більше виробляється електрики і тим більше сила струму. Модулі класифікуються по піковій потужності у ватах (Втп). Ват - одиниця вимірювання потужності. Один піковий ват - технічна характеристика, яка указує на значення потужності установки в певних умовах, тобто коли сонячне випромінювання в 1 кВт/м2 падає на елемент при температурі 25 оC. Така інтенсивність досягається за хороших погодних умов і Сонця в зеніті. Щоб виробити один піковий ват, потрібен один елемент розміром 10 x 10 см. Крупніші модулі, площею 1 м x 40 см, виробляють близько 40-50 Втп. Проте сонячна освітленість рідко досягає величини 1 кВт/м2. Більш того, на сонці модуль нагрівається значно вище за номінальну температуру. Обидва ці чинника знижують продуктивність модуля. В типових умовах середня продуктивність складає близько 6 Вт·ч в день і 2000 Вт·ч в рік на 1 Втп. 5 ват-година - це кількість енергії, споживана лампочкою 50-вата протягом 6 хвилин (50 Вт x 0,1 ч = 5 Вт·ч) або портативним радіоприймачем протягом години (5 Вт x 1 ч = 5 Вт·ч).

Хоча якість продукції не завжди однакова, більшість міжнародних компаній проводить достатньо надійні фотоелектричні модулі з терміном експлуатації до 20 років. На сьогоднішній день виробники модулів гарантують вказану потужність на період до 10 років


3.3 Використання сонячних батарей


Технології використання сонячної енергії активно розвиваються в багатьох країнах світу. Деякі з них вже досягли комерційної зрілості, успішно конкурують на ринку енергетичних послуг і навіть увійшли до повсякденного вжитку.

У Німеччині, наприклад, в рамках проекту «Тисяча дахів» 2250 будинків було обладнано фотоелектричними сонячними батареями. В США була прийнята ще масштабніша програма «Мільйон сонячних дахів», яка розрахована на період до 2010 року і склала 6,3 млрд доларів бюджетних вкладень.

Встановлена потужність сонячних фотоелектричних перетворювачів в світі перевищує 1 ГВт, причому на частку Японії доводиться 50%. Україна, на жаль, набагато відстає по рівню вживання цих джерел енергії, хоча по праву може вважатися одним з родоначальників цього напряму. Багато космічних апаратів обладнано сонячними панелями, розробленими і випущеними в Києві.

В Каракумах для зварки конструкцій ферми застосували розроблений туркменськими фахівцями апарат, що використовує енергію сонця. Замість того, щоб привозити з собою громіздкі балони із стислим газом, зварювачі можуть використовувати невеликий акуратний чемоданчик, куди поміщена сонячна батарея. Народжений сонячним промінням постійний електричний струм використовується для хімічного розкладання води на водень і кисень, які подаються в пальник газозварювального апарату. Вода і сонце в Каракумах є біля будь-якого колодязя, так що громіздкі балони, які нелегко возити по пустелі, стали непотрібними.

Велика сонячна електростанція потужністю близько 300 кіловат створюється в аеропорту міста Фенікс в американському штаті Арізона. Сонячну енергію в електрику перетворюватиме сонячна батарея, що складається з 7 200 сонячних елементів. В тому ж Штаті діє одна з найбільших в світі іригаційних систем, насоси якої використовують енергію сонця, перетворену в електрику фотоелементами. В Нігері, Малі і Сенегалі теж діють сонячні насоси. Величезні сонячні батареї живлять електроенергією мотори насосів, які піднімають прісну воду, необхідну в цих пустинних місцевостях, з величезного підземного моря, розташованого під пісками.

Сонячні батареї поступово входять в наш побут. Вже нікого не дивують мікрокалькулятори, що працюють без батарей. Джерелом живлення для них служить невелика сонячна батарея, вмонтована в кришку приладу. Замінюють інші джерела живлення мініатюрною сонячною батареєю і в електронному годиннику, радіоприймачах і магнітофонах, садових ліхтарях. З'явилися сонячні радіотелефони-автомати уздовж доріг в пустелі Сахара. Перуанське місто Тірунтам стало володарем цілої радіотелефонної мережі, що працює від сонячних батарей. Японські фахівці сконструювали сонячну батарею, яка за розмірами і формою нагадує звичайну черепицю. Якщо такою сонячною черепицею покрити будинок, то електроенергії вистачить для задоволення потреб його мешканців. Правда, поки неясно, як вони обходитимуться в періоди снігопадів, дощів і туманів? Без традиційної електропроводки обійтися, мабуть, не вдасться.

Конкуренції сонячним батареям не має там, де сонячних днів багато, а інших джерела енергії не використовуються. Наприклад, зв'язківці з Казахстану встановили між Алма-Атою і містом Шевченка на Мангишлаці дві радіорелейні станції ретрансляцій для передачі телепередач.Але не прокладати ж для їх живлення лінію електропередачі. Допомогли сонячні батареї, які дають в сонячні дні, а їх на Мангишлаке багато - цілком достатньо енергії для живлення приймача і передавача.

Хорошим сторожем для тварин, що пасуться, служить тонкий дріт, по якому пропущений слабкий електричний струм. Але пасовища звичайно розташовані оддалік ліній електропередач. Вихід запропонували французькі інженери. Вони розробили автономну огорожу, яку живить сонячна батарея. Сонячна панель вагою всього півтора кілограми дає енергію електронному генератору, який посилає в подібний забір імпульси струму високої напруги, безпечні, але достатньо чутливі для тварин. Однієї такої батареї вистачає, щоб побудувати огорожу завдовжки 50 кілометрів.

Мексиканські конструктори розробили електромобіль, енергію для двигуна якого доставляють сонячні батареї. По їх розрахунках, при поїздках на невеликі відстані цей електромобіль зможе розвивати швидкість до 40 кілометрів на годину. Світовий рекорд швидкості для сонцемобіля - 50 кілометрів на годину - розраховують встановити конструктори з ФРН.

А ось австралійський інженер Ганс Толструп назвав свій сонцемобіль «Тихіше їдеш - далі будеш». Конструкція його гранично проста: трубчаста сталева рама, на якій укріплені колеса і гальма від гоночного велосипеда. Корпус машини зроблений з склопластика і нагадує собою звичайну ванну з невеликими віконцями. Зверху вся ця споруда накрита плоским дахом, на якому закріплено 720 кремнієвих фотоелементів. Струм від них поступає в електромотор потужністю в 0,7 кіловати. Мандрівники (а окрім конструктора, в пробігу брав участь інженер і автогонщик Ларрі Перкинс) поставили своєю задачею перетнути Австралію від Індійського океану до Тихого (це 4130 кілометрів!) не більше ніж за 20 днів. На початку 1983 року незвичайний екіпаж стартував з міста Перт, щоб фінішувати в Сіднеї. Не дивлячись на труднощі, сонцемобіль неухильно просувався до мети, знаходячись в дорозі 11 годин щодня. Середня швидкість машини склала 25 кілометрів на годину.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать