Розглянемо похибку перетворювача, зібраного за диференціальною схемою рис. Нехай перетворювачі 1 і 2 мають адитивні похибки, тобто такі, які не залежать від вхідної величини. У цьому випадку
. (22)
Похибки Ду обох каналів можна вважати рівними, оскільки канали однакові й перебувають у тих самих умовах. При цьому вихідна величина диференціального перетворювача
. (23)
Отже, у диференціальних перетворювачах адитивні похибки каналів 1 і 2 компенсуються.
Лінійність функції перетворення диференціальної схеми другого типу при малих х краще, ніж лінійність вихідних перетворювачів. Нехай канали 1 і 2 мають нелінійні функції перетворення
. (24)
Розкладаючи у1 й у2 у степеневий ряд в околі х0, одержимо
;
. (25)
При підсумовуванні у1 й у2 будуть скомпенсовані адитивні похибки, та похибки і нелінійність, що виникають завдяки другій похідній функції перетворення.
3. Логометричні схеми з'єднання перетворювачів
Логометрична схема включення перетворювачів (рис. 4) містить два канали з послідовним з'єднанням перетворювачів, вихідні величини яких подаються на логометричний перетворювач. Логометричний перетворювач – це перетворювач із двома входами, вихідна величина якого є функцією відношення від вхідних величин:
. (26)
Обидва канали логометричної схеми, як і в диференціальній схемі, виконуються однаково й перебувають у тих самих умовах.
Логометрична схема дозволяє компенсувати мультиплікативну похибку.
У загальному випадку для схеми, наведеної на рис. 4, при пропорційній функції перетворення каналів 1 і 2
. (27)
Рисунок 4 – Логометр
Вихідна величина приладу з логометричною схемою включення дорівнює
, (28)
тому вона не залежить від зміни чутливості каналів послідовного перетворення.
4. Компенсаційні схеми включення перетворювачів
Прилади, побудовані за компенсаційною схемою (схеми зі зворотним зв'язком), мають малу як адитивну, так і мультиплікативну похибки. Застосування зворотного зв'язку дозволяє створити прилади, що мають малу статичну й динамічну похибку. Ці прилади мають більшу вихідну потужність, і їхні показання мало залежать від навантаження.
Структурна схема компенсаційного перетворювача наведена на рис. 5. Вхідна величина х подається на один із входів перетворювача, що віднімає, на інший його вхід подається хос сигнал тієї ж фізичної природи, що й вхідна величина х, причому розмір хос величини визначається розміром вихідної величини у. Різниця Дх=х-хос надходить у перетворювач 1. Якщо перетворювачі 1 і 2 мають лінійні функції перетворення
, , (29)
де S1 й S2 ‑ чутливості відповідних перетворювачів, то залежність між вхідною величиною х і сигналом хос визначається співвідношенням
(30)
Рисунок 5 – Компенсаційна схема, або схема зі зворотним зв’язком
З (30) слідує, що
.(31)
Добуток S1S2 часто досить великий, і можна вважати, що x ≈ хос. Рівність x ≈ хос часто має місце й при нелінійних функціях перетворення. З іншого боку, хос є функцією вихідної величини
. (32)
Із цього співвідношення можна визначити
(33)
де f –1 – позначення функції, зворотної до (48).
Отже, якщо x ≈ хос, то y визначається перетворювачем 2 (рис. 5) і мало залежить від перетворювача 1. У приладах зі зворотним зв'язком роль перетворювача зворотного зв'язку виконують прості пристрої, що мають високу точність. При цьому високу точність має й прилад у цілому.
Розглянемо функцію перетворення й чутливість перетворювача зі зворотним зв'язком. Для простоти визначимо, що перетворювачі 1 і 2 на схемі рис. 5 мають пропорційні функції перетворення (32).
Маючи на увазі рівності (33) і
, (34)
одержуємо
. (35)
Звідси чутливість схеми зі зворотним зв'язком
(36)
Визначимо похибку пристрою, обумовлену мультиплікативними похибками вхідних у нього перетворювачів 1 і 2, тобто похибку, викликану мінливістю чутливостей цих перетворювачів.
Згідно з (36) чутливість схеми є функцією двох змінних
. (37)
Зміну можна визначити як повний диференціал виразу (38):
. (38)
Вхідні частки похідні в (54) виходять шляхом диференціювання (39):
;
. (39)
Відносна мультиплікативна похибка дорівнює відносній зміні чутливості . З огляду на це одержимо
, (40)
де ‑ відповідно відносні мультиплікативні похибки перетворювачів 1 і 2 (рис. 5).
Можна показати, що відносна адитивна похибка компенсаційної схеми визначається таким же виразом (40) з тією ж різницею, що і і .
За виразом (40) обчислюється похибка схеми, якщо відомі похибки перетворювачів 1 і 2. Якщо ж ці похибки є випадковими й відомі їх середньоквадратичні похибки й то середньоквадратична похибка компенсаційного перетворювача
. (41)
З отриманих співвідношень видно, що вплив похибки перетворювача 1 на похибку приладу з компенсаційною схемою сильно зменшується.
Зменшення залежності похибки приладу зі зворотним зв'язком від похибки перетворювача 1 можна показати в такий спосіб. Допустимо, що в схемі складного перетворювача зі зворотним зв'язком (рис. 5) перетворювач 1 не стабілізований і його чутливість може залежати, зокрема, від опору, на який навантажений цей складний перетворювач. При зменшенні чутливості зменшуються вихідна величина й сигнал зворотного зв'язку . Це викликає збільшення й збільшує значення . Отже, завдяки зворотному зв'язку зменшується похибка, викликана зміною .
5. Динамічні характеристики давачів
Динамічні характеристики визначають перехідний процес встановлення вихідного сигналу при зміні вхідного. Інформаційна здатність вимірювальних перетворювачів крім статичних характеристик, що подають функцію перетворення сигналу, визначається й динамічними характеристиками, які визначають швидкість виконання одного перетворення, що визначає й обсяг одержуваної інформації.
Для аналізу часових характеристик передатну функцію, звичайно, зображують у вигляді лінійної функції. Таке наближення припустиме, оскільки до лінійної функції прагнуть привести функції реальних перетворювачів. А необхідність такого наближення обумовлена тим, що аналіз часових характеристик нелінійних елементів надзвичайно складний.
Часто використовують не тільки часове, але й спектральне подання сигналу. Для періодичного сигналу маємо
, (42)
де спектральні коефіцієнти мають вигляд :
, .
У загальному випадку часовий зв'язок між вхідною величиною й вихідною можна визначити диференціальним рівнянням:
. (43)
При аналізі складних вимірювальних систем їх намагаються привести до набору простих ланок. Однією із простих ланок у цьому випадку є інтегруюча схема (рис.6). Її робота описується рівнянням
. (44)
Роботу інтегруючих перетворювачів зручніше за все розглянути на прикладі електричних перетворювачів, відомих з теорії електричних кіл.
Інтегруючий ланцюжок має вигляд:
Рисунок 6 – Інтегруюча схема
Вихідна напруга визначається виразом:
. (45)
Ця схема буде інтегруючою щодо вхідного сигналу, якщо . Доведемо це. Перепишемо рівняння електричного кола у вигляді
. (46)
Подаючи вихідну напругу у вигляді добутку , одержимо
. (47)
Далі проведемо послідовність перетворень, щоб визначити допоміжні функції х і у.
, (48)
, (49)
, (50)
. (51)
Цей вираз дозволить виразити вихідний сигнал при будь-якій формі вхідного
. (52)
Зобразимо епюри вихідного сигналу для одно- й двоступеневого перетворювача (рис. 7).
Рисунок 7 – Епюри напруги для функції підключення
У спектральному поданні робота інтегруючої схеми показана на рис. 8.
Рисунок 8 – Фазовий портрет інтегруючої схеми
У такий же спосіб можна розглянути роботу схеми, що диференціює. Основне рівняння має вигляд:
. (53)
Інші параметри пропонується вивести самостійно.
До простих схем можна віднести й схему із затримкою сигналу, описану рівнянням
. (54)
У цій схемі сигнал на виході повторює сигнал на вході, але із затримкою, рівною .
Будь-який давач або вимірювальний прилад є з'єднанням окремих вимірювальних перетворювачів. Переважно це послідовне з'єднання. При послідовному з'єднанні загальний коефіцієнт передачі визначається добутком коефіцієнтів передачі окремих перетворювачів. Він визначає і частотні характеристики давача.
Тоді нормована частотна характеристика послідовного з'єднання двох інтегруючих перетворювачів має вигляд:
. (55)
Фазовий портрет цієї характеристики має вигляд петлі, розташованої в негативній на півплощині уявних значень, що перетинає вісь дійсних значень у точці послідовний диференціальний логометричний перетворювач схема
(56)
при
. (57)
На високих частотах запізнювання вихідного сигналу становить півперіод, а точка наближається до нуля з боку негативних значень дійсної осі.
Для перехідної характеристики в початковий момент справедливо параболічне наближення:
. (58)
Частотна характеристика триланкового давача має вигляд:
. (59)
Дійсну вісь перетинає в точці
(60)
при
. (61)
Для перетворювача, що диференціює, і що в електричних колах моделюється за допомогою -ланцюжка, нормоване рівняння -ланцюжка має вигляд:
. (62)
Як видно із цього рівняння, -ланцюжок може лише апроксимувати ідеальний перетворювач, що диференціює, тільки в області, у якій швидкість зміни сигналу істотно менше 1/Т.
Рішення цього рівняння в частотному поданні має вигляд:
. (63)
Нормований фазовий портрет передатної функції є півколом, розташованим над віссю дійсних значень, радіус якого дорівнює 0,5, а центр розташований у точці , . Зі зменшенням частоти модуль передатної функції прагне до нуля, а фаза випереджає фазу вхідного сигналу на чверть періоду.
У часовому поданні при подачі на вхід кінцевого стрибка вхідної дії передатня функція має вигляд:
, (64)
де – початкове значення вихідного сигналу рівне ;
– стрибок вхідного впливу.
Характеристики послідовних з'єднань диференціальних ланцюжків є дзеркальним відбиттям характеристик інтегруючих ланцюжків.
Далі розглянемо причини виникнення нестійкості давачів з негативними зворотними зв'язками й методи їхнього усунення.
Негативні зворотні зв'язки часто застосовуються при конструюванні давачів і вимірювальних приладів для лінеаризації передатних характеристик. У цьому випадку лінійність приладу визначається в основному лінійністю елемента порівняння, що, як правило, працює в області малих сигналів. Але, при конструюванні пристроїв зі зворотними зв'язками необхідно враховувати можливість їхнього самозбудження.
Самозбудження пристроїв відбувається у випадку, якщо коефіцієнт передачі по петлі зворотного зв'язку перевищує одиницю. У цьому випадку малий сигнал, що виникає спочатку у вигляді шумів, властивих кожному елементу, пройшовши по петлі, одержує посилення й повертається в початкову точку з більшою величиною. Друге й наступне обернення сигналу по колу збільшують сигнал. Лавиноподібний процес збільшення сили сигналу триває до настання обмеження. Але цей зв'язок є позитивним. Вимірювальні прилади проектують із негативним зворотним зв'язком. Але, як показано вище (51), реальні перетворювачі в діапазоні частот міняють фазу переданого сигналу. Тому проектуючи негативний зворотний зв'язок у заданому частотному діапазоні, можна одержати позитивний зв’язок поза цим діапазоном.
Страницы: 1, 2