Не выдерживают критики, как утверждается в [7], и попытки привлечь локальные пары для объяснения псевдощели, наблюдаемой в ВТСП при T>Tc. При этом сторонники локальных пар полагают, что величина псевдощели, наблюдаемой в некоторых областях зоны Бриллюэна методом фотоэмиссионной спектроскопии с угловым разрешением (ARPES), есть не что иное как энергия распада локальной пары на два электрона (или биполярона на два полярона). Такая интерпретация полностью противоречит эксперименту, ибо ARPES свидетельствует о сильной зависимости псевдощели от квазиимпульса. Но если бы псевдощель появлялась из-за распада локальных пар, то ее величина (равная энергии связи электронов в одной паре) не зависела бы от импульса. Более того, сейчас уже можно считать доказанным наличие в ВТСП четко определенной поверхности Ферми (на которой и образуется псевдощель), а локальные пары, будучи бозонами, не имеют поверхности Ферми.
Следует отметить, что статья [7] написана в исключительно "живом" стиле, более характерном для популярного журнала, нежели для "сухих" Physical Review Letters. Процитируем ее заключительный абзац, стараясь при переводе быть по возможности ближе к оригиналу: "В этом сообщении мы позаботились о том, чтобы раз и навсегда показать, что сценарий биполяронной сверхпроводимости ВТСП не удовлетворяет экспериментальным ограничениям и является теоретически противоречивым. Хотя бозе-эйнштейновская конденсация сильно связанных электронных пар в принципе возможна, в отношении ВТСП экспериментальные ограничения таковы, что этот сценарий не реализуется. Что касается вопроса о том, могут ли биполяроны играть роль в формировании бозонных квазичастиц и их конденсации, мы исключаем такую возможность. Как однажды заметил Aldous Huxley, трагедия прекрасных теорий заключается в том, что они часто разрушаются безобразными фактами. К этому стоит добавить, что трагедия не столь прекрасных теорий состоит в том, что они даже не могут быть разрушены: подобно персонажам мультипликационных фильмов, они продолжают наслаждаться своим прелестным существованием, пока не кончится пленка."
Ответ А.Александрова не заставил себя долго ждать (к сожалению, к нему не смог присоединиться недавно ушедший из жизни Н.Мотт). Буквально в день выхода в свет номера Physical Review Letters со статьей [7] А.Александров поместил "comment" к ней в лос-аламосовском банке электронных препринтов [8]. Он утверждал, что возражения авторов [7] против биполяронной сверхпроводимости ВТСП "есть результат неправильного приближения для энергетического спектра биполяронов и неправильного применения теории биполяронов".
Используя развитую им недавно двухзонную модель, А.Александров получил формулу для Tc, которая свободна от подгоночных параметров и включает в себя, кроме фундаментальных констант, концентрацию носителей n и глубины проникновения магнитного поля l ab и l c вдоль взаимно перпендикулярных кристаллографических направлений. При подстановке в эту формулу экспериментальных (для Y-123) значений n, l ab и l c получается Tc » 100 K, что говорит о самосогласованности биполяронного подхода и свидетельствует, по мнению А.Александрова, о том, что ВТСП находятся в режиме бозе-эйнштейновской конденсации.
А.Александров также подчеркнул, что он с Н.Моттом неоднократно отмечали, что биполяроны малого радиуса в медно-оксидных купратах представляют собой не “onsite”, а ”intersite” образования. Это является следствием неэкранированного электрон-фононного взаимодействия и очень существенно, поскольку именно для “onsite“ биполяронов авторы [7] дают оценку эффективной массы биполярона, завышенную на два порядка по сравнению с экспериментом.
Кроме того, А.Александров отметил, что длина когерентности в заряженном бозе-газе, о которой идет речь в [7], не имеет ничего общего с размером бозона. Она, в частности, может быть такой же большой, как и в БКШ-сверхпроводнике. Следовательно, приводимые в [7] аргументы неверны. Неправильным считает А.Александров и утверждение авторов [7] о “бездисперсионности” фотоэмиссионной спектральной функции биполяронного соединения, поскольку дырка (которая образуется при фотостимулированном разрыве биполярона и испускании электрона) движется в поляронной зоне, обладающей дисперсией (что и “видит” ARPES).
К основным же экспериментальным аргументам в пользу биполяронной сверхпроводимости ВТСП А.Александров причисляет поведение Hc2 и удельной теплоемкости в окрестности сверхпроводящего перехода. Он делает вывод, что нет однозначных экспериментальных свидетельств против биполяронной теории. Свой комментарий А.Александров закончил так: "Ясно, однако, что любая теория, прекрасна она или нет, не может быть разрушена “безобразными” артефактами, подобными тем, что приведены в [7]".
О том, что произошло после этого "обмена любезностями", рассказал P.Rodgers в заметке [9]. Ниже дано ее краткое изложение.
В одном из интервью А.Александров назвал последний (цитированный выше) абзац статьи [7] "нездоровым и немотивированным" и отметил, что такого же мнения придерживаются многие другие физики. На это Д.Раннингер возразил, что упомянутый абзац был добавлен к статье [7] "для того, чтобы успокоить ситуацию", а не с провокационными целями. Реакция "ВТСП-сообщества" на работу [7] оказалась неоднозначной. Например, А.Абрикосов написал Д.Раннингеру письмо, в котором были такие слова: "Я получил удовольствие от чтения вашей статьи про биполяронную сверхпроводимость. Я полностью согласен с ней и оценил два последних предложения". В то же время А.Бишоп назвал тон статьи [7] "бесполезно полемическим". "Я мог бы заметить в том же духе", - сказал А.Бишоп, - "что красота находится в глазах зрителя. В создавшейся же ситуации есть несколько зрителей".
В качестве эпиграфа к своей "обобщающей" заметке [9] P.Rodgers выбрал высказывание Д.Раннингера: "Мир теорий ВТСП - очень деликатный, с большим количеством плохой крови и рукопашного боя". Важно, что физики бранятся только… в поисках истины.
По материалам следующих публикаций:
P.W.Anderson, Phys. Rev. Lett., 1975, 34, p.953
B.K.Chakraverty et al., Phys. Rev. B, 1978, 17, p.3780
B.K.Chakraverty, J. Phys. (Paris) Lett., 1979, 40, L-99
A.S.Alexandrov and J.Ranninger, Phys. Rev. B, 1981, 23, p.1796
N.F.Mott, Physica C, 1993, 205, p.191
A.S.Alexandrov and N.F.Mott, "High Temperature Superconductors and Other Superfluids", London, 1994
B.K.Chakraverty, J.Ranninger, D.Feinberg, Phys. Rev. Lett., 1998, 81, p.433
A.S.Alexandrov, cond-mat/9807185
P.Rodgers, Science, 1998, 281, p.1427
Квантово-классический металл
В основе современных представлений о свойствах металлов лежит теория
ферми-жидкости Ландау. Согласно этой теории, существует взаимно однозначное
соответствие между основным и низколежащими возбужденными состояниями системы взаимодействующих
электронов (то есть ферми-жидкости) и соответствующими состояниями
системы невзаимодействующих электронов (то есть ферми-газа). При
наличии сколь угодно сильного взаимодействия между образующими ферми-жидкость частицами
оказывается, что взаимодействие между квазичастицами (элементарными
возбуждениями над основным состоянием) является очень слабым в меру малости
энергии этих возбуждений e : Интенсивность рассеяния квазичастиц друг на друге
(то есть их обратное время жизни) пропорциональна e 2, то есть
становится меньше e при достаточно малых e.
Теория ферми-жидкости применима к системам с размерностью два и более. В одномерных системах она не работает, и поиск такого типа систем был предметом интенсивных исследований. Но ведь образцы и материалы, которые исследуются экспериментально, не могут быть "чисто" одномерными! Они "в лучшем случае" сильно анизотропны, и поэтому одномерные модели, строго говоря, неприменимы к описанию их свойств. Ведь необходимо учитывать, по крайней мере, взаимодействие между "одномерными компонентами" таких образцов. А это взаимодействие может приводить к "восстановлению" ферми-жидкостных характеристик. Другими словами, надо еще доказать, что в реальных (а не модельных) и, вообще говоря, объемных образцах возможно нарушение теории ферми-жидкости.
Такое доказательство представлено в работе [D.G.Clarke et al., Science 279 (1998) 2071] сотрудников Joseph Henry Laboratories of Physics, Princeton University. Они исследовали влияние сильного магнитного поля на органический проводник (TMTSF)2PF6. Это соединение обладает очень сильной анизотропией электросопротивления (1:100:100000) при комнатной температуре. При нормальном давлении оно является диэлектриком с волной спиновой плотности, а при P>6кбар становится сверхпроводником с Tc» 1К. Увеличение магнитного поля до H>H*» 7Тл приводит не только к исчезновению сверхпроводимости, но и к полной потери когерентности в движении электронов перпендикулярно проводящим кристаллографическим слоям, тогда как когерентность сохраняется в каждом отдельно взятом слое. Это состояние не является ферми-жидкостным. Авторы назвали его "квантово-классическим металлом", который характеризуется квантовым характером переноса заряда в слоях и классическим - перпендикулярно слоям. Поскольку величина H* уменьшается с ростом P, то не исключено, что такое состояние может реализоваться и в отсутствие магнитного поля, но при очень высоких давлениях.
Изменение симметрии параметра порядка ВТСП при
допировании
Любопытные результаты получены при исследовании ВТСП Bi2Sr2CaCu2O8+d
с различным содержанием кислорода методом фотоэмиссионной спектроскопии
(ARPES). Нули параметра сверхпроводящего порядка D , которые присутствуют в
“оптимально допированных” образцах с максимальной Tc,
отсутствуют в образцах с “избыточным допированием” (overdoped). Это довольно
удивительно еще и потому, что электронная зонная структура обоих типов образцов
практически одинакова. Полученные данные противоречат гипотезе о “чистой” dx2-y2-симметрии
D . По-видимому, D является двухкомпонентной (по крайней мере) величиной,
причем “удельный вес” каждой компоненты изменяется при допировании.
(По материалам “High-Tc Update”).
R.Gatt et al., “Superconducting Gap Symmetry and Doping in Bi2Sr2CaCu2O8+x“, preprint.
I.Vobornik et al., “Electronic Structure of Overdoped Bi2Sr2CaCu2O8+x“, preprint.
(тексты обоих препринтов могут быть получены по запросу у M.Onellion; e-mail: onellion@comb.physics.wisc.edu).
Сверхпроводниковый накопитель для комфортного бомоубежища
от Intermagnetics
Intermagnetics General Corp. поставила и установила сверхпроводящую магнитную
накопительную систему мощностью 6МДж (6MJ microSMES) на базе ВВС США в Tyndall
(Florida). Cистема IPQ-750TM включает также рефрижератор
(сryocooler), ВТСП токовводы, мощную электронику с коммерческой системой
бесперебойного питания (UPS). Накопитель интегрирован в автономный комплекс
передвижного бомбоубежища (“Mobile/Relo-catable Shelter”) и рассчитан на бесперебойную
работу в течение 24 часов в сутки. Компактное бомбоубежище имеет размеры 16 x
2.8 x 2.8м3.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8