Сверхпроводники

Рассмотрим далее вопрос о поведении теплоемкости. Удельная теплоемкость вещества, а разность удельных теплоемкостей сверхпроводящего и нормального состояний с учетом формулы (5.9) есть




Но при Т = Тc критическое поле Нcm = 0, поэтому




Эта формула, известная как формула Рутгерса, показывает, что при Т = Тc теплоемкость испытывает скачек (рис.20), как это и должно быть при фазовых переходах второго рода. При Т > Тc теплоемкость линейно зависит от температуры, как это бывает у нормальных металлов (электронная теплоемкость).

Перенос тепла в металле осуществляется как свободными электронами, так и колебаниями решетки. И электропроводность, и теплопроводность обусловлены процессами рассеяния электронов. Поэтому наличие сверхпроводимости означает отсутствие обмена энергией электронов проводимости с решеткой. В сверхпроводнике по мере понижения температуры все большее число свободных электронов связывается в куперовские пары и тем самым выключается из процессов обмена энергии, а значит, вклад электронов в теплопроводность постоянно уменьшается. При достаточно низких температурах в сверхпроводнике практически не остается свободных электронов, и он ведет себя как изолятор: электронная система просто полностью выключается из теплового баланса.

Значительная разность теплопроводности металла в нормальном состоянии и сверхпроводящем используется для создания сверхпроводящего теплового ключа – устройства, позволяющего разрывать тепловой контакт между источником холода и охлаждаемым телом в экспериментах в области низких температур. Конструктивно сверхпроводящий ключ выполняется в виде отрезка тонкой проволоки (диаметром 0,1 – 0,3 мм) из тантала или свинца длинной от нескольких единиц до нескольких десятков сантиметров, соединяющего исследуемое тело с хладопроводом. На такую проволоку наматывается медная катушка, по которой пропускается ток, достаточный для создания магнитного поля, большего критического значения. При пропускании тока сверхпроводимость разрушается магнитным полем, и ключ открывается.

Аналогичные «магнитные» ключи применяются для создания поля в короткозамкнутых сверхпроводящих соленоидах. В таких соленоидах также имеется участок сверхпроводника с намотанной на нем медной обмоткой. При пропускании тока через управляющую обмотку соленоид становится разомкнутым, и через него проходит ток от внешнего источника. Затем ключ замыкается, а магнитный поток оказывается замороженным в соленоиде. Сверхпроводящий ключ может разрываться и при нагревании (рис.21)

В таком случае у короткозамкнутого соленоида имеется небольшой участок – перемычка, подогреваемая внешним источником. Перемычка переходит из сверхпроводящего в нормальное состояние при её нагревании до температуры выше Тc.

Так как сверхпроводящее состояние является бездиссипативным, в таком соленоиде магнитное поле чрезвычайно стабильно и существует до тех пор, пока его температура не превысит Тc. Современная техника позволяет изготовлять криостаты со столь малым теплопритоком, что гелиевые температуры поддерживаются после заливки жидкого гелия в криостат со сверхпроводящим соленоидом примерно в течении года!


6. Теория Гинзбурга – Ландау.

6.1 Примеры фазовых переходов.

В основе теории Гинзбурга – Ландау лежит теория фазовых переходов Ландау, разработанная им для общей ситуации, когда система претерпевает фазовый переход, при котором состояние системы перехода меняется непрерывно, а симметрия скачком. При этом высокотемпературная, или, как говорят, «парамагнитная» фаза, является более симметричной, а низкотемпературная фаза – менее симметричной, поскольку она проявляет дополнительный порядок, нарушающий симметрию парафазы. При фазовом переходе происходит понижение энергии упорядочной фазы по сравнению с энергией неупорядочной фазы. Примеры фазового перехода весьма разнообразны. К ним относится переход из парамагнитного состояния в ферромагнитное или антиферромагнитное состояние. Для примера на рис. 22 показана конфигурация различных моментов отдельных атомов в упорядочной фазе (рис.22,а) и в разупорядочной (рис.22,б). Если при Т > Тc средний магнитный момент всего кристалла равен нулю, то при Т < Тc возникает предпочтительное направление, выделенное внешним магнитным полем; проекция среднего момента на это направление уже отлична от нуля. Соответственно, если при Т > Тc  имелась симметрия по отношению к вращению, то при Т < Тc такая симметрия отсутствует. В общем случае параметром порядка является физическая величина, отличная от нуля в упорядочной фазе и равная нулю в разупорядочной (парамагнитной) фазе. При отходе от точки фазового перехода Тc в глубину упорядочной фазы параметр порядка возрастает. В случае ферромагнетика параметром порядка служит вектор магнитного момента М ¹ 0 при Т < Тc  и М = 0 при Т > Тc. Ферромагнетизм широко распространен в природе. Так, примерами металлических высокотемпературных ферромагнетиков (Тc > 300К) являются Fe, Ni, Co. Имеются примеры диэлектрических и полупроводниковых ферромагнетиков. Более сложно организована структура антиферромагнетика. При этом парамагнитная фаза не отличается от паказаной на рис.22,б, а в упорядочной фазе конфигурация магнитных атомов имеет «шахматный» порядок (см.рис.23), когда направление спинов чередуются.

Примерами таких, как говорят, «зеркальных» антиферромагнетиков, являются фториды переходных металлов. Параметром порядка здесь является вектор энтиферромагнетизма L = M1 – M2, то есть разность магнитных моментов двух соединений атомов. В ряде случаев магнитные моменты соседних атомов скошены по направлению друг к другу (см.рис.24), при этом помимо L ¹ 0 возникает и ферромагнитная компонента М = М1 + М2 ¹ 0 (в отличие от зеркальных антиферромагнетиков, где М = 0). Говорят, что в таком случае имеет место слабый ферромагнетизм.

Другим примером фазового перехода второго рода, при котором симметрия меняется скачком, а состояние системы непрерывно, является структурный переход, с которым часто связано возникновение сегнетоэлектрических свойств в кристалле.               

6.2 Теория Гинзбурга – Ландау. Свободная энергия сверхпроводника.

Исходным моментом в построении теории среднего поля для сверхпроводников является догадка Гинзбурга и Ландау о том, что явление сверхпроводимости может быть описано в терминах волновой функции сверхпроводящих электронов Ф(r), вступающей в роли параметра порядка. Поскольку в общем случае волновая функция Ф(r) является комплексной, это предположение эквивалентно утверждению о том, что параметр порядка сверхпроводимости является двухкомпонентным.

 Так как сверхпроводимость обусловлена образованием конденсата куперовских пар, волновая функция сверхпроводящих электронов может быть выражена через одноэлектронные волновые функции Ф↑ и Ф↓ электронов с противоположно направленными спинами Ф(r) = < Ф↑ Ф↓ >, причем как можно  показать модуль этой величины, определяет щель в энергетическом спектре сверхпроводника.

При наличии пространственной неоднородности свободной энергии должно быть добавлено градиентно-слагаемое, пропорциональное êÑФ ê2. Поскольку Ф является волновой функцией электронной пары, выражение  êÑФ ê2 ассоциируется с плотностью кинетической энергии сверхпроводящих электронов. По этой причине в плотность свободной энергии сверхпроводящее слагаемое, отвечающее пространственным неоднородностям, войдет в виде



Здесь мы учли, что масса куперовской пары равна 2m, где m – масса электронов. При наличии магнитного поля оператор импульса p = -iħÑ должен быть заменен на оператор обобщенного импульса.

Подчеркнем, что нетривиальным обобщением теории Гинзбурга – Ландау является замена градиентного слагаемого с×(Ñj)2 на слагаемое, содержащее оператор обобщенного импульса куперовской пары. Включение вектор- потенциала электромагнитного поля А в выражение для свободной энергии позволит связать параметр порядка с плотностью сверхпроводящего тока js.


7. Электродинамика сверхпроводников.

                                                         Всякая последовательно развивающаяся наука

                                                         только потому и растет, что она нужна челове-

                                                         ческому обществу.

                                                                                                              С.И.Вавилов   

7.1 Уравнение Лондонов.

Характерным пространственным масштабом в сверхпроводниках является длина когерентности x- расстояние, на котором движение двух электронов р­;

-р¯ носит ещё скоррелированный характер. Здесь мы, предполагая, что все величины медленно меняются на расстоянии x, опираясь на феноменологическую теорию двухжидкостной гидродинамики и используя простые соотношения электродинамики.

Итак, полагая, что все величины плавно меняются в пространстве, плотность свободной энергии в сверхпроводнике при данной температуре запишем в виде



Здесь первое слагаемое представляет собой кинетическую энергию упорядочного движения сверхпроводящих электронов, us - дрейфовую скорость и ns - концентрацию сверхпроводящих электронов, второе слагаемое – плотность энергии магнитного поля, возникающего при наличии сверхпроводящего тока в соответствии с уравнением Максвелла




Плотность сверхпроводящего  потока js, в свою очередь, связана с дрейфовой скоростью us простым соотношением



Множитель ns = ns (T) отражает тот факт, что при Т ≠ 0  не все электроны являются сверхпроводящими – в сверхпроводнике имеются квазичастицы, распространение которых связано с диссипацией энергии.



где мы ввели обозначение



Величину lL, обладающую размерностью длины, называют лондоновской глубиной проникновения.

Свободная энергия всего сверхпроводящего образца получается интегрированием e (r) по пространству .



Используем это соотношение для того, чтобы получить уравнение, которому подчиняется распределение магнитного поля Н (r) в сверхпроводнике. Для этого найдем изменение свободной энергии при вариации поля (Н(r) ® Н(r) + s Н(r))



Если рассматриваемый нами сверхпроводник находится в равновесном состоянии, то свободная энергия должна быть минимальна, соответственно вариации свободной энергии вблизи этого состояния должны быть равны нулю

sЕ = 0 заключается в том, чтобы положить равным нулю выражение в круглых скобках в этом уравнении. Тем самым мы получим связь магнитного поля в сверхпроводнике с его пространственными производными – уравнение Лондонов

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать