Термоелектричні перетворювачі та їх застосування

2) мати високу хімічну стійкість: в агресивних середовищах спай не повинен піддаватися корозії швидше, ніж матеріал термоелектродів;

3) мати низький омічний опір;

4) зона неоднорідності у місці спаю повинна бути мінімальною;

5) перелічені вище вимоги повинні виконуватись у всьому діапазоні вимірюваних температур, для якого проектувалася термопара.

Розглянемо найпоширеніші методи спаю термопар.

Паяння свинцево-олов’яними припоями рекомендується для роботи при температурах до 150 0С. Перед паянням кінці термоелектродів ретельно лудяться. Луда не повинна виходити далеко за межі спаю. Перехід від лудженої ділянки до нелудженої повинен бути чітко обмеженим. Луда зазвичай наноситься гарячим способом (паяльником) чи гальванічним осадженням із розчину.

Зі стандартних термоелектродів найважче лудити алюміній, який перед луженням необхідно ретельно зачистити і обробити методом травлення в соляній кислоті. Після лудіння підготовлені кінці очищають від залишків флюсу, надлишків припою і промивають у теплій воді. Термоелектроди вкладають так, щоб кінці луди були на однаковому рівні, а полуджені ділянки тісно закручують на два - чотири оберти. На скрутку накладають клаптик припою, а весь спай прогрівають, доки припій не заповнить місце контакту термоелектродів.

Паяння жорсткими мідно-срібно-цинковими припоями рекомендують для роботи при температурах до 700 0С. Зачищені термоелектроди скручують так само, як при паянні олов’яно-свинцевими припоями. Місце спаю укладають на вогнетривкий матеріал, щоб скрутка розміщалась з невеликим нахилом у бік кінця спаю. Зверху на спай накладають шматок припою і засипають флюсом. Після описаної підготовки місце спаю нагрівають в електричній печі чи за допомогою газової горілки.

При газовому зварюванні заготовлені і скручені тармоелектроди оплавляють у полум’ї горілки доки не утвориться каплеподібний спай. Для більшості матеріалів бажано відновлюване полум’я. Лише платинові термоелектроди легко переносять більш сприятливе для них окислювальне середовище. Для виготовлення термопар краще за все застосовувати воднево-кисневе полум’я. Висока температура полум’я дозволяє проводити зварювання з мінімальними розмірами зони прогріву. Слід утримуватись від поєднання зварювання з відпалом в горілці, що приводить до збільшення зони неоднорідності, а значить, і до псування термопари. Відпалювання слід робити в спеціальних печах. Крім того, водень менш схильний до утворення з’єднань з термоелектронними матеріалами, ніж вуглець, що міститься, зазвичай, в усіх горючих газах. Особливою чутливістю до вуглецю відрізняються високотемпературні термопари, в яких небезпека карбідизації спаю збільшується внаслідок того, що викликана нею неоднорідність при високих температурах неперервно розповсюджується по термоелектроду (збільшуючи градієнт мікронапруг), все більш змінюючи властивості термопари.

Електрозварювання в дузі між двома електродами мало відрізняється від газового зварювання. Різниця полягає в тому, що при електрозварюванні в дузі між двома електродами створюється більш інертне середовище. Зазвичай застосовують графітні електроди. В графітно-дуговому зварюванні відсутні майже всі недоліки газового, зокрема сильна карбідизація електродів. Для отримання нейтрального середовища електроди виготовляють із вольфраму, а в зону дуги вдувають інертний газ (частіше за все аргон) з невеликими домішками кисню для підтримки стійкості горіння дуги. Якщо після утворення спаю дугу вимкнути і дати спаю остигнути в інертному середовищі, то спай вийде у вигляді чистої блискучої металевої кульки, який не потребує ні очистки, ні наступної обробки. Насичення місця спаю вольфрамом незначне.

Конденсаторне зварювання. Для зварювання термопар застосовуються близькі за робочими параметрами зварювальні машини ТКМ-4, ТКМ-7, ТКМ-8. При подачі напруги на вхідні клеми машини первинна обмотка стабілізуючого випрамляючого трансформатора СТВ отримує живлення через вимикач. Одразу після ввімкнення через селеновий двохнапівперіодний випрямляч починається зарядка батареї конденсаторів. Зарядка максимальної ємності продовжується не більше 0,5 с. Ємність конденсаторної батареї визначається числом і положенням гнізд штекерів, що вмикаються у верхньому ряду перемикача.

При натисненні на педаль машини електроди зближуються і стискають зварювальний виріб, потім відбувається перемикання рухомої планки перемикача із правого положення в ліве. При цьому розмикається коло зарядження конденсаторів і негайно починається їх розрядження на первинну обмотку зварювального трансформатора, коефіцієнт трансформації якого регулюється перестановкою штекера в нижньому ряді гнізд перемикача. Індукування у вторинній обмотці трансформатора імпульсу струму обумовлює зварювання деталей, затиснених між електродами машини.

Принципова схема установки конденсаторного зварювання зображне на рис.3.


Рис.3.


За допомогою машини можна зварювати дроти діаметром від 0,05 до 1,00 мм і приварювати їх до металевих поверхонь. Оскільки час зварювання триває мілісекунди, зона прогрівання незначно перевищує діаметр провідника.

Зварювання в оптичному зображенні сонця чи плазмової дуги може виконуватися в повністю інертному середовищі без забруднення домішками. Оптична система з великою світлосилою дозволяє отримувати в зображенні зведену температуру, яка перевищує половину температури джерела випромінювання. Із серійних плазмово-дугових оптичних пристроїв можна порекомендувати установку "Уран". Висока чистота середовища зварювання дозволяє отримувати в таких пристроях найбільш чисті сплави.


7. Термопари для вимірювання низьких температур


Характерною особливістю термоелектричного методу вимірювання низьких температур являється те що із зменшенням температури погіршуються умови генерації термоЕРС.

При переході в стан надпровідності термоелектричний ефект Зеєбека, на якому оснований принцип дії термопар, очевидно, повністю зникає.

Термопара мідь - константан в практиці вимірювання низьких температур отримала найбільш широке застосування.

Номінальна статична характеристика термопари мідь - константан для діапазону температур 2…273 К наведена в табл.2.


Таблиця 2.

Т, К

α, мкВ/град


Т, К

α, мкВ/град

3

 - 0,165


153

 - 25,105

33

 - 8,150


173

 - 27,406

53

 - 12,170


193

 - 29,616

73

 - 15,127


213

 - 31,759

93

 - 17,752


233

 - 33,778

113

 - 20,272


253

 - 35,715

133

 - 22,715


273

 - 37,163


На відміну від електронеоднорідності з чистих металів сплави часто виходять за рамки потреб по неоднорідності, що пред’являється до термоелектронів. Особливо це відноситься до константану, вибір якого для вимірювання низьких температур потребує особливої ретельності і уваги. Для термопар придатний тільки термопарний константан. Звичайна термоелектрична мідь задовольняє потреби по неоднорідності. Як видно з табл.2, термоЕРС термопари мідь - константан зменшується із збільшенням температури. При температурі нижче потрійної точки водню (13,81 К) використовуються сплави Кондо, значно більш ефективні, ніж термопара мідь - константан в діапазоні температур.



Висновки


Саме термопару мідь - константан ми використовували на лабораторіях спеціалізації для визначення коефіцієнта термоЕРС досліджуваного зразка InSb.

А також виконували градюювання термопари за допомогою еталонного рідинного термометра, та отримали наступну графічну заледність E (t) подану на рис.4.


Рис.4.


Потім, взявши дві точки на прямій, використали вираз для знаходження коефіцієнта термоЕРС.



Отримане експериментальне значення α близьке до табличного значення коефіцієнта термоЕРС (αтабл = 39 мкВ/град). Похибка має місце за рахунок наступних недоліків рідинного термометра:

1)                інерційноності показів;

2)                мертвого ходу;

3)                можливої нециліндричності форми капіляра.

А також похибка могла бути спричинена від неточності підтримання температури холодного спаю.

На відміну від рідинних термометрів, недоліками яких є недостатня точність і чутливість, малий вимірювальний діапазон неможливість дистанційних вимірів та ін., то термопари цих недоліків не мають.

Коефіцієнт термоЕРС добре відомий для більшості термопар. Оскільки малі напруги можна виміряти з великою точністю (за допомогою гальванометра чи потенціометра), то цим можна скористатись для вимірювання температури з точністю до 0,001о С.

За допомогою термопари можна вимірювати температуру в широкому інтервалі (-200о С ÷ 1600о С).


Список використаних джерел


1.                Калашников С.Г. Електрика. навчальний посібник для університетів. Пер з 2-го рос. вид. - К.: Радянська школа, 1964, - 630 с.

2.                Геращенко О.А., Брунов А.Н. Температурные измерения. Справочник. - К.: Наукова думка, 1984, - 496 с.

3.                Дущенко В.П., Носомок В.М. Фызичний практикум. - К.: Радянська школа, 1965., - 336 с.

4.                Термопары. - Вікіпедіа. Вільна енциклопедія. Інтернет. http://ru. wikipedia.org/wiki/Термопары. (19.12.2009).

 A


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать