, где: (1.2.4)
-мощность -ой ступени,-время -ой ступени.
, где: (1.2.5)
-мощность -ой ступени,-время -ой ступени.
Средняя полная мощность предприятия за сутки:
(1.2.6)
Определяем число часов использования максимальной нагрузки:
Число часов использования максимальной нагрузки ()- это такое время, в течение которого через электрическую сеть, работающую с максимальной нагрузкой, передавалось бы такое же количество электроэнергии, которое передается через нее в течение года по действительному графику нагрузки:
Перестраиваем суточный график активной мощности предприятия в годовой по продолжительности.
(1.2.7)
(1.2.8)
Рис.1.2.2. Годовой график нагрузки по продолжительности
1.3 Выбор номинальной мощности трансформаторов ГПП по графику нагрузки
Совокупность допустимых нагрузок, систематических и аварийных перегрузок определяет нагрузочную способность трансформаторов, в основу которой положен тепловой износ изоляции трансформатора. Выбор трансформатора без учета нагрузочной способности может привести к необоснованному завышению их установленной мощности, что экономически нецелесообразно.
Рис.1.3.1 Суточные графики нагрузки завода
Так как мощность трансформатора неизвестна, то пользуемся следующим подходом:
1. на исходном графике проводят линию средней нагрузки Sср;
2. выделяется пиковая часть – участок наибольшей перегрузки с продолжительностью Н’( пересечение графика полной мощности и прямой Sср);
Продолжительность наибольшей перегрузки составляет Н’=12 часов
3. Определяем начальную загрузку графика К1:
(1.3.1)
4. Предварительно определяем перегрузку К’2:
(1.3.2)
5. Полученное значение К’2 меньше чем
,
поэтому принимаем:
,
а продолжительность перегрузки Н скорректируем по формуле:
(1.3.3)
6. По полученным значениям К1 и Н определяем допустимый коэффициент систематической перегрузки К2доп.
При температуре 20С определяем К2доп =1,1 [2, табл.1.36]
7. Определяем номинальную мощность трансформатора
(1.3.4)
Исходя из полученной мощности намечаем 2 варианта ближайшей номинальной мощности трансформатора:
· Sном.тр.1=4 МВА
· Sном.тр.2= 6,3МВА
Выполняем расчет коэффициентов К1 и К2 для каждого из вариантов номинальной мощности трансформаторов:
1 вариант: Sном.тр=4МВА
1. на исходном графике проводят линию средней нагрузки Sном.тр;
2. выделяется пиковая часть – участок наибольшей перегрузки с продолжительностью Н’( пересечение графика полной мощности и прямой Sном.тр);
Продолжительность перегрузки составляет Н’=14 часов.
3. Определяем начальную загрузку графика К1:
(1.3.5)
4. Предварительно определяем перегрузку К’2:
(1.3.6)
5. Полученное значение К’2 меньше чем
,
поэтому принимаем:
,
а продолжительность перегрузки Н скорректируем по формуле:
6. По полученным значениям К1 и Н определяем допустимый коэффициент систематической перегрузки К2доп.
При температуре 20С определяем К2доп =1,105 [2, табл.1.36]
7. Сравнивая полученное значение К2 с К2доп можно сделать вывод, что
К2=1,705> К2доп следовательно трансформатор не может систематически перегружаться по данному графику нагрузки, следовательно, данный вариант мощности трансформатора отпадает.
2 вариант: S ном. тр = 6,3 МВА
1. на исходном графике проводят линию средней нагрузки Sном.тр;
2. выделяется пиковая часть – участок наибольшей перегрузки с продолжительностью Н’( пересечение графика полной мощности и прямой Sном.тр);
Продолжительность перегрузки составляет Н’=9 часов.
3. Определяем начальную загрузку графика К1:
4. Предварительно определяем перегрузку К’2:
5.Полученное значение К’2 больше чем
,
поэтому принимаем:
,
а продолжительность перегрузки Н =Н’=9 час
6. По полученным значениям К1 и Н определяем допустимый коэффициент систематической перегрузки К2доп.
При температуре 20С определяем К2доп =1,155 [2, табл.1.36]
7. Сравнивая полученное значение К2 с К2доп можно сделать вывод, что
К2доп=1,155> К2 следовательно трансформатор может систематически перегружаться по данному графику нагрузки, следовательно, данный вариант мощности трансформатора проходит по данной проверке.
1.4 Проверка возможности перегрузки выбранных трансформаторов работать с перегрузкой по заданному графику нагрузки
1) Нормальный режим
Коэффициент загрузки трансформатора составит:
(1.4.1)
Трансформаторы в часы максимума нагрузки также смогут пропустить всю мощность, так как их суммарный коэффициент перегрузочной способности составит:
, где (1.4.2)
-допустимая систематическая перегрузка за счет неравномерности суточного графика нагрузки;
- допустимая систематическая перегрузка за счет неравномерности годового графика нагрузки, не должна превышать 15%.
(1.4.3)
Следовательно, трансформаторы будут обеспечивать электрической энергией вех потребителей II и III категории с допустимой систематической перегрузкой в 130,5%.
2) Послеаварийный режим работы
Проверяем установленную мощность трансформатора в аварийном режиме при отключении одного из трансформаторов и необходимости обеспечить электроснабжение потребителей 1-й и 2-й категорий в период максимума:
1,3 Sном.тр =1,3 6,3 =8,19 МВА> 0,1738 7,577=1,317 МВА, где 17,38% Smax – потребители II категории, где 1,3- коэффициент аварийной перегрузки .[2, табл.1.36]
Следовательно, в послеаварийном режиме трансформатор будет обеспечивать потребителей II и III категории
1.5 Составление схемы внешнего электроснабжения и приемной подстанции
Схемы подстанций должны обеспечивать следующие требования:
1. Схема должна обеспечить необходимую степень надежности электроснабжения потребителей
2. Схема должна быть простой и удобной в эксплуатации
3. Схема должна учитывать возможности развития предприятия с учетом роста нагрузок без коренной реконструкции сети
4. Схема должна обеспечивать надежную защиту всего электрооборудования в аварийных режимах и автоматическое восстановление питания.
5. Схема должна обеспечивать электроснабжение потребителей при аварийном выходе из строя одного из основных элементов ( трансформатора или линии электропередач), при этом оставшиеся в работе элементы должны принять на себя полную или частичную нагрузку отключившегося элемента с учетом допустимой перегрузки в послеаварийном режиме
6. Схема должна обеспечить резервирование отдельных элементов позволяющих проводить ремонтные и противоаварийные работы.
7. Внешнее электроснабжение завода осуществляется от подстанции энергосистемы по двум ВЛЭП на стальных опорах. На ГПП установлены два двухобмоточных трансформатора. В качестве схемы внешнего электроснабжения принята схема два блока с отделителями и неавтоматической перемычкой со стороны линии. Данная схема является менее надежной, чем схема на выключателях, но более дешевой.
· Стальных двухцепных опорах (110 кВ)
· Стальных двухцепных опорах (35 кВ)
Рис. 1.5.1 – Схема внешнего электроснабжения
1.6 Экономический режим работы трансформаторов
При эксплуатации и проектировании необходимо предусматривать экономически целесообразный режим работы трансформаторов, который определяется их параметрами и нагрузкой подстанции. Нагрузка подстанции изменяется в течение суток, а суточные графики - в течении года. Значительные снижения нагрузки приходятся на весенне-летний период.
В такие периоды трансформаторы оказываются длительное время недогруженными. Это вызывает в них относительное увеличение потерь электроэнергии. При снижении нагрузки в работе целесообразно оставлять только часть трансформаторов. При этом нагрузку подстанции недостаточно просто принять на трансформаторы, ее необходимо покрыть наиболее экономичным способом, обеспечив минимум потерь активной мощности в сети.
Суммарные потери трансформатора можно показать с помощью данной формулы:
, (1.6.1)
Где
-
приведенные потери холостого хода трансформатора; (1.6.2)
-
приведенные потери короткого замыкания трансформатора; (1.6.3)
- экономический эквивалент реактивной мощности, учитывает потери активной мощности, связанные с производством и распределением реактивной мощности;
-
коэффициент загрузки трансформатора (1.6.4)
Расчет экономического режима работы трансформатора проведем для двух вариантов:
1. Sном.тр = 6,3 МВА Uном=35 кВ
2. Sном.тр =
1) Sном.тр = 6,3 МВА Uном=35 кВ
Определяем исходные данные трансформаторов: ТМН- 6300/35 [2, табл.3.4]
Sном. тр = 6,3 МВА
Uкз = 7,5 %
= 46,5 кВт
= 9,2 кВт
I xx = 0,9 %
Приведенные потери:
, где
(при ) ;
(1.6.5)
, где
(1.6.6)
Приведенные потери для одного трансформатора:
Приведенные потери для двух раздельно работающих трансформаторов:
Определяем нагрузку, при которой целесообразно переходить на работу с двумя трансформаторами:
кВА. (1.6.7)
Полученные результаты сведем в таблицу 1.6.1:
Таблица 6.1.1
Годовые потери мощности и электроэнергии
S, кВА |
Продолжительность ступени нагрузки, ч/год |
Потери мощности в трансформаторах, кВТ |
Потери э/э в трансформаторах, кВтч/год |
||
1458 |
0,231 |
|
1825 |
21,527 |
45991,96 |
1937 |
0,307 |
|
730 |
25,755 |
41317,78 |
3161 |
0,501 |
|
365 |
41,980 |
25572,19 |
3498 |
0,555 |
|
365 |
47,815 |
30003,84 |
3926 |
0,623 |
|
365 |
56,077 |
36278,76 |
4065 |
|
0,322 |
365 |
53,482 |
76944,57 |
4409 |
|
0,349 |
365 |
57,272 |
88457,96 |
4630 |
|
0,367 |
365 |
59,869 |
96347,82 |
4938 |
|
0,391 |
365 |
63,700 |
107987,2 |
5499 |
|
0,436 |
365 |
71,312 |
131112,9 |
6456 |
|
0,512 |
365 |
86,187 |
176300,3 |
6680 |
|
0,530 |
2190 |
90,012 |
246322 |
7577 |
|
0,601 |
730 |
106,638 |
250111,9 |
Всего за год ΔW=1352749кВтч/год |