Трьох- і чотирьох хвильове розсіяння світла на поляритонах в кристалах ніобіту літію з домішками

Мал.8. Полярітонная дисперсія кристалів:

No.2....n,

No.3.....s,

No.4........l,

No.5........Ž.


§3. СПР в моно- і полідоменних кристалах


У шаруватих кристалах може спостерігатися лінійна дифракція світла. Лінійна дифракція може відбуватися на варіаціях діелектричної проникності, тобто зміні показника заломлення кристала. Хвилевий вектор діфрагованого променя повинен лежати на тій же поверхні Френеля, що і падаючий промінь, оскільки лінійна дифракція відбувається без зміни частоти випромінювання. При параметричному розсіянні діфрагувати може будь-яка з хвиль тих, що беруть участь у взаємодії (накачування, розсіяне, поляритон), якщо її хвилевий вектор в кристалі задовольняє попередній умові. На рис.9,10 дано два спектри для монодоменного No.3 і полідоменного No.2 кристалів відповідно з однаковою товщиною шарів і в однаковій геометрії (поза кристалом кут між накачуванням і нормаллю до шарів 9,6о). Особливістю розсіяння в області частот від 4000 см-1 до 900 см-1 є падіння інтенсивності до нуля в околиці 1700 см-1. Це явище пояснюється інтерференцією електронної і ґратчастої частин сприйнятливості [12].

У разі моно доменного кристала спостерігається декілька додаткових “еліпсів” в червоній області спектру. Це явище не можна пояснити, як лінійну дифракцію, оскільки відбувається зміна частоти в порівнянні з основним “еліпсом”. А усередині кристала вектор нормальний шарам, майже паралельний накачуванню, тому він не може перевести хвилевий вектор  на ту ж поверхню Френеля. Аналогічна ситуація для сигнальної хвилі, оскільки вона розсівається на невеликий кут. Виникнення додаткових “еліпсів” на спектрі (рис.9) можна пояснити неоднорідністю кристала або відхиленням його складу від складу, відповідного хімічній формулі. У ніобіті літію відмінність, як правило, полягає в невідповідності числа атомів літію в елементарному осередку числу, визначуваному хімічною формулою. Цей ефект можна теж віднести до просторової неоднорідності кристала. Судячи по спектру, можна сказати, що в кристалі існує чотири області з різним власним складом. Згідно [13] у видимому діапазоні спектру звичайний показник заломлення не залежить від стехиометрии кристала. Проте в інфрачервоному діапазоні ця залежність достатньо сильна. Можна визначити показник заломлення поляритону по перебудованих кривих для областей кристала різного складу. Наприклад, на частоті 2700 см-1 він має значення np=2.133; 2.143; 2.154; 2.167. Це відповідає максимальному розкиду коефіцієнта стехиометрии на 0.01.

У полідоменних кристалах додатково до варіацій показника заломлення варіюється нелінійна сприйнятливість другого порядку. Але вона може зміняться набагато сильніше за лінійну характеристику, в нашому зразку (2)c міняється від - (2)|c до + (2)|c від шару до шару. Нелінійна дифракція відбувається на варіаціях цієї нелінійної сприйнятливості. Сусідні домени мають антипаралельну поляризацію, причому вектора поляризації орієнтовані уздовж оптичної осі кристала. На рис.10 зображений спектр полідоменного кристала ніобіту літію No.2. Окрім основного “еліпса” верхньої поляритонной гілки, видно частина “еліпса” розсіяння в перший порядок нелінійної дифракції. Розсіяння в інші дифракційні максимуми не спостерігається, оскільки для них не виконується умова просторового синхронізму. Також на спектрі, окрім поляритонного розсіяння на фононі 580 см-1, видно частина поляритонного розсіяння в перший дифракційний максимум. На рис.11 зображений спектр цього ж кристала No.2 в іншій геометрії розсіяння (кут між накачуванням і нормаллю до шарів -9,2о поза кристалом). “Еліпс” розсіяння на верхній поляритонної гілці збільшився і торкається кривий розсіяння в перший дифракційний максимум. Тепер ми маємо розсіяння в нульовий і перший порядки дифракції на однакових частотах, це дозволяє визначити період доменної структури.

Мал.9. Спектр параметричного розсіяння в монодоменному Nd:Mg:LiNbO3.


=47.4o поза кристалом.


Мал.10. Спектр параметричного розсіяння в полидоменном Nd:Mg:LiNbO3 .


=47.4o поза кристалом.


Мал.11. Спектр параметричного розсіяння в полідоменном Nd:Mg:LiNbO3 .

=66.2o поза кристалом.

§4. Товщина шаруючи в полидоменном LiNbO3


На рис.13. зображена дисперсія звичайного показника заломлення полідоменного кристала ніобіту літію No.2 на верхній поляритонної гілці, яка отримана по перебудованих кривих рис.10,11. Ця дисперсія використовується при обчисленні хвилевого вектора оберненої сітки, відповідній доменній структурі кристала. Оскільки при нелінійній дифракції в умову просторового синхронізму входять чотири хвилеві вектори, то для цього явища доступна більш велика частотна і кутова область при параметричному розсіянні, чим для лінійної дифракції. Векторна діаграма цієї взаємодії зображена на рис.12. Хвилевий вектор оберненої сітки можна отримати з рівнянь:


  (11)


Вектор  по порядку величини такий же, як і хвилевий вектор поляритону, тому не виконується умова просторового синхронізму для нелінійної дифракції в другій і подальші максимуми. Товщина шару була отримана з рівнянь (11) при розсіянні на поляритонах з різними частотами в трьох геометрії =47.4o, 57о, 66.2o. Її значення склало d=5.60.1 ±мкм.


Мал.12. Векторна діаграма взаємодії параметричного розсіяння і нелінійної дифракції.

Мал.13. Дисперсія звичайного показника заломлення полідоменного кристала ніобіту літію, отримана в різній геометрії:

l =47.4o поза кристалом.

 ¦ =66.2o поза кристалом.

Розділ 3. Чотирьохфотонне розсіяння світла на поляритонах


§1. Огляд ефектів в нецентросиметричних середовищах


Випадок нецентросиметричного середовища є найбільш загальним при розгляді процесів активної спектроскопії. У кристалах без центру симетрії в інтенсивність сигналу активної спектроскопії комбінаційного розсіяння (АСЬКР) дають внесок як прямі чотирьохфотонні процеси, так і каскадні трьоххвилеві процеси, що йдуть через проміжні збуджені стани. Ці процеси йдуть на різних нелінійних восприимчивостях: на кубічній і квадратичній відповідно. Унаслідок когерентності розсіяння різні внески не підсумовуються, а інтерферують. Тому вони можуть приводити до значних змін спектрів АСЬКР: деформації форми лінії і появі дублетної структури[14]. Детально проаналізовано явище інтерференції трьох- і чотирьоххвильового механізму утворення розсіяних хвиль в роботі [15].

У роботі [2] отримано збудження поляритонної хвилі методом чотирьохфотонної спектроскопії в кристалі GAP. Був визначений показник заломлення і коефіцієнт загасання для трьох частот поляритонной хвилі. Проте при розрахунку коефіцієнта загасання не враховувалися расходимости променів, немонохроматичність збудливих накачувань, а також вплив довжини взаємодії на ширину лінії розсіяння. Також проводилися експерименти із збудженням поверхневих поляритонов в кристалі GAP [16].

При каскадному процесі, що складається з двох трьох хвильових взаємодій, спочатку збуджується поляритонний стан з хвилевим вектором рівним ефективному збудливому, яке може розповсюджуватися за межі області збудження. Потім на нім розсівається пробна хвиля. У зв'язку з цим генерація сигналу може мати набагато більшу не локальність. У роботі [17] досліджувалися піко секундні поляритонні збудження в хлориді амонію. Спочатку збуджувався поляритон двома накачуваннями, а потім пускався пробний промінь із зрушенням в просторі у напрямі розповсюдження поляритону і із затримкою в часі. При цьому спостерігалося розсіяння на поляритоні поза областю його збудження. Це дозволило зміряти групову швидкість поляритону прямим методом, а не через похідну . Також було заміряно час життя збудженого поляритонного стану.


§2. Пряма чотирьохфотонна взаємодія


Розглянемо стоксову компоненту розсіяного випромінювання (рис.14). Співвідношення між частотами для даного випадку виконується у вигляді:


  (12)


де wL-частота пробного випромінювання, що подається на зразок, ws - частота розсіяного на поляритоні випромінювання. При цьому для спостереження ефективного прямого процесу повинна виконуватися умова просторового синхронізму:


 (13)


Приведемо вираз для інтенсивності сигнальної хвилі з частотою ws [18]:


 , (14)


IL, II-інтенсивність хвиль з частотами wL wі w

, (15)


де  - похідна чисто електронній поляризованості в рівноважному положенні ядер, N, M - концентрація і маса ядер відповідно. У останньому виразі де wph - фононна частота, Г- коефіцієнт, що описує загасання. Резонансна сприйнятливість зростає при наближенні різницевої частоти до частоти фонона.



Мал.14. Прямий чотирьохфотонний процес.


§3. Каскадні трьох хвильові процеси


У чотирьох фотонні процеси в нецентросиметричних кристалах вносять свій внесок каскадні трьох хвилеві процеси (рис.15). В даному випадку створюється підвищена (в порівнянні з рівноважною) населеність поляритоних станів “розігріваючими” променями з частотами w1, w2. Каскадному когерентному розсіянню відповідає приватне вирішення неоднорідного хвилевого рівняння, в правій частині якого коштує нелінійна поляризація, збуджена “розігріваючими” променями. Окрім співвідношень (12) і (13), в даному випадку необхідне виконання ще однієї умови просторового синхронізму:

\  (16)


Мал.15. Каскадний трьох хвильовий процес


Такий процес є когерентним, тому що відбувається розсіяння пробної хвилі безпосередньо на збудженні з хвилевим вектором . Каскадна сприйнятливість третього порядку когерентного процесу задається виразом:


 (17)


Знаменник цього виразу указує на те, що на інтенсивність у виразі (14) впливає ще один розлад хвилевих векторів:



Процеси із збудженням поляритонного стану і подальшого розсіяння на нім відбуваються як два трьох хвильові процеси на квадратичній сприйнятливості (2)c [19]. Квадратична сприйнятливість теж ділиться на резонансну і нерезонансну частини. Нерезонансна складова  де b- квадратична поляризованість, а резонансна складова:


  (16)

m- дипольний момент молекули.

Внески від прямого чотирьох фотонного процесу, що йде на кубічній нелінійності, і від двоступінчатих трьох хвильових процесів можуть бути соизмеримы. Використовуючи відмінності в умовах фазового синхронізму, можна розділяти прямі і каскадні процеси.


§4. Експериментальна установка для спостереження чотирьох фотонного розсіяння світла на поляритонах


У більшості виконаних раніше робіт використовувалася традиційна схема КАРС-СПЕКТРОСЬКОПІЇ, в якій одне з накачувань є двічі виродженим з погляду процесу чотирьох хвилевого зміщення, і реєстрація сигналу ведеться на антистоксовій частоті. В даному випадку використовувався найбільш загальний варіант чотирьох хвилевої взаємодії, в якій всі хвилі мають різні частоти і реєструється стоксова компоненту розсіяного випромінювання. Схема експериментальної установки приведена на рис.16. Джерелами хвиль збудливого випромінювання з частотами w1 і w2 служать YAG: Nd+3-лазер і перебудований лазер на кристалі  що мають довжини хвиль генерації l1=1,064 мкм і l2 в інтервалі 1,08-1,22 мкм відповідно і повторення 1-33 Гц, що працюють з частотою. Накачуванням для перебудованого лазера на кристалі з центрами забарвлення служить випромінювання основної гармоніки YAG:Nd+3-лазера, що пройшло через YAG:Nd+3-усилитель і поляризаційну призму Глана-Томсона Пг1. Як зондуюча хвиля використовується випромінювання другої гармоніки YAG:Nd+3-лазера (довжина хвилі lL=532 нм), частоти ГВГ, що генерується подвоювачем, яке відділяється від випромінювання основної гармоніки за допомогою дзеркала з селективним по частоті коефіцієнтом віддзеркалення. Завдяки використанню джерел ближнього ГИК діапазону для збудження поляритонної хвилі, паразитні засвічення, викликані люмінесценцією досліджуваного середовища під дією їх випромінювання, потрапляють в ГИК діапазон, далекий від області реєстрації сигналу, лежачої у видимій частині спектру. Необхідна поляризація променів, падаючих на кристал, визначається поляризаційними призмами Глана-Томсона Пг1 і Пг2. Кути падіння променів накачування на досліджуваний кристал задаються системою дзеркал З2-з4. Крім того, введення в промені накачувань додаткових фокусуючих лінз Л1-л3 дозволяє варіювати значення щільності потужності накачувань в області їх взаємодії і їх кутову расходимість. Розсіяне випромінювання збирається трьохлінзовою системою ЛС в площині вхідної щілини спектрографа СП, пройшовши заздалегідь через поляризаційну призму Глана-Томсона Пг3, службовку аналізатором розсіяного випромінювання і що відсікає що пройшло через зразок Об випромінювання пробної хвилі.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать