Вещество в состоянии плазмы

Следует также рассмотреть особенности движения частиц пла-

змы. Движения частиц обычного газа ограничиваются только столкновениями между собой или со стенками сосуда, в котором находиться этот газ. Движение частиц плазмы может быть ограничено магнитным полем. Плазму можно сдерживать магнитной стенкой, толкать магнитным поршнем, запирать в магнитной ловушке. В сильном магнитном поле частицы плазмы крутятся вокруг магнитных силовых линий. Вдоль магнитного поля частица движется свободно. Подробнее об этом будет рассказано ниже.

Квазинейтральность плазмы.

Даже в том случае, если плазма образуется в результате иони-

зации химически простого газа, например азота, кислорода, паров ртути, её ионная компонента будет содержать ионы различных сортов – с одним, двумя, тремя или более электронными зарядами. Следует отметить, что кроме атомарных ионов могут присутствовать молекулярные ионы, а также нейтральные атомы и молекулы. Каждая из этих компонент будет характеризоваться своей концентрацией n и температурой T. В общем случае, когда в плазме присутствуют однозарядные ионы с концентрацией n1, двухзарядные – с концентрацией n2, трёхзарядные – с концентрацией n3 и т.д., можно записать равенство: ne = n1 + 2n2 + 3n3 + Такое соотношение между концентрацией отрицательных и положительных зарядов в плазме говорит о том, что плазма в целом квазинейтральна, т.е. в ней нет заметного избытка зарядов одного знака над зарядами другого. На этом свойстве плазмы следует остановиться несколько подробнее, т.к. оно имеет существенное значение и, в конечном счёте, в нём содержится самоё определение понятия «плазма». Естественно возникает вопрос: «С какой степенью точности в ионизированном газе должно соблюдаться условие квазинейтральности?». Каким бы путём не создавалась ионизация, заранее совсем не очевидно, что положительных и отрицательных зарядов должно быть поровну. Из-за различия в скоростях движения электронов и ионов, первые могут с большей лёгкостью покидать объём, в котором они возникли. Поэтому если благодаря процессам ионизации атомов первоначально образуется одинаковое количество зарядов противоположного знака, то из-за быстрого исчезновения электронов, погибающих на стенках аппаратуры, внутри которой находиться ионизированный газ, ионы, казалось бы, должны оставаться в значительном большинстве, т.е. не о какой нейтральности не может быть и речи. С другой стороны, необходимо учесть, что при преимущественной утечке зарядов одного знака в ионизированном газе немедленно образуется избыток зарядов другого знака, который способствует выравниванию потока электронов и ионов и препятствует увеличению разницы между концентрациями частиц обоих знака. Условия, при которых этот эффект будет достаточен для того, чтобы поддерживать квазинейтральность, можно описать следующим образом.

Допустим для простоты, что в ионизированном газе присут –

ствуют кроме ионов только однозарядные ионы. Квазинейтральность означает, что ne очень мало отличается от ni. Как отразиться на поведении отдельных частиц заметное отклонение n­e от ni? Здесь сразу же выделяются два крайних случая. Если число заряженных частиц в объёме невелико, то создаваемые ими электрические поля слишком слабы для того, чтобы повлиять на их движение, даже если все поля складываются. В этом случае отдельные электроны и ионы в своём поведении никак не связаны друг с другом и каждая частица движется так, как будто все другие отсутствуют. Следовательно условие квазинейтральности здесь не обязательно выполняется. Противоположный случай ионизированному газу с высокой концентрацией заряженных частиц, занимающему большой объём. В этом случае избыточные заряды, возникающие при сильном нарушении равенства между ne и ni, создают электрические поля, достаточные для выравнивания потоков и восстановления квазинейтральности.

В конечном счёте всё зависит от соотношения между потен-

циальной энергией отдельного иона или электрона в электрическом поле, возникающем при нарушении квазинейтральности, и величиной средней кинетической энергии частиц, связанной с их тепловым движением.

До сих пор речь шла о газовой плазме. Однако плазменные яв-

ления возникают часто в объектах, казалось бы, далёких от газов.

Остановимся, например, на металлах или полупроводниках. По

современным представлениям их структура такова: есть решётка, состоящая из упорядоченно расположенных частиц – ионов или нейтральных частиц, и есть газ хаотически перемещающихся носителей электричества, называемых электронами (заряд отрицательный) и дырками (заряд положительный). Электроны и дырки в твёрдых телах не являются частицами в полном смысле этого слова: в свободном состоянии именно таких частиц (т.е. с соответствующими зарядом и массой) нет. Тем не менее уравнения, описывающие их движение, подобны уравнениям, описывающим движения обычных частиц – с той разницей, что роль массы здесь играют некоторые величины, зависящие от структуры вещества. Эти величины обычно именуют эффективными массами электронов и дырок. Поэтому электроны и дырки в твёрдых телах именуют квазичастицами (лат. quasi – почти). Поскольку поведение заряженных квазичастиц аналогично поведению электронов и ионов, то и свойства газа электронов и дырок сходны со свойствами газовой плазмы. Отсюда и название такой системы – твёрдотельная плазма.

Движение частиц плазмы.

Хотя мы можем рассматривать плазму как некоторую частную

форму газовой смеси (в простейшем случае как смесь двух компонент: электронного и ионного газа), однако по целому ряду основных физических свойств она отличается от обычного газа, содержащего лишь нейтральные частицы. Это различие проявляется прежде всего в поведении плазмы под действием электрических и магнитных полей. В противоположность обычному нейтральному газу, на который электрические и магнитные поля не оказывают заметного воздействия, плазма под действием таких полей может очень сильно изменять свои свойства. Под действием электрического поля (даже очень слабого) в плазме появляется электрический ток. В магнитном поле плазма ведёт себя, как очень своеобразное диамагнитное вещество. Плазма может также интенсивно взаимодействовать с электромагнитными волнами. В частности, это находит выражение в том, что радиоволны могут отражаться от плазмы, как от зеркала.   

Попытаемся сначала нарисовать самую общую картину движе-

ния заряженной частицы в плазме. Путь каждого иона или электрона можно сначала очень грубо представить себе состоящим из отрезков, на протяжении которых частица движется свободно, не испытывая

модействия с соседями. Эти участки свободного движения частиц прерываются кратковременными столкновениями, в результате которых направление движения меняется. В промежутках между двумя последовательными столкновениями частица движется под действием того общего электрического или магнитного поля, которое создано в плазме за счёт внешних источников. Это очень упрощённая картина поведения частицы, и она нуждается в серьёзных поправках, учитывающих основные особенности плазмы, которые проявляются прежде всего в характере её собственного электрического поля, существующего независимо от внешних источников. Каждая заряженная частица создаёт вокруг себя электрическое поле с радиально расходящимися от неё силовыми линиями. Поля от отдельных с зарядами разных знаков, складываясь между собой, в среднем компенсируют друг друга. Однако это не означает, что в каждый данный момент времени электрическое поле в какой-либо выбранной нами точке в точности равно нулю. Поле в любой точке плазмы в действительности очень быстро изменяется и по величине, и по направлению, и эти хаотические колебания дают нуль, только если рассчитывать среднюю величину напряжённости поля за достаточно длинный интервал времени.

Напряжённость собственного электрического поля плазмы ис-

пытывает сильные хаотичес- кие колебания как во времени, так и в пространстве, быстро изменяясь на очень малых расстояниях.

Заряженная частица, находя-

щаяся в электрическом поле, движется по законам, напоми-

нающим обычные законы движения тел в поле тяжести.

Обратимся к рисунку, на котором показаны траектории заряженных частиц в электрическом поле, направленном по вертикальной оси. Стрелки изображают скорости движения частиц в некоторый момент времени. Сила, действующая на заряженную частицу, равна qE, где q – заряд и E – напряжённость поля. Для однозарядных частиц q = ± e, где e – элементарный электрический заряд, а для многозарядных ионов q представляет собой небольшое целое, кратное e (e= к). Под действием этой силы однозарядный положительный ион с массой mi приобретает ускорение , которое направленно вдоль вертикальной оси вверх. Ускорение электрона направлено вниз и численно равно , где me – масса электрона. Электрон гораздо легче иона, и поэтому ускорение, которое получает электрон, во много раз больше, чем ускорение иона. Траектория заряженной частицы в однородном электрическом поле всегда составляет собой пораболу. Форма этой пораболы зависит от свойств частицы, начальных условий движения и величины E. Пусть, например, электрическое поле направленно по оси y, а начальная скорость v0 – вдоль оси x (траектория I на рисунке). В этом случае движение частицы по оси x будет равномерным, а по оси y – равноускоренным.

Применение плазмы в науке и технике.

Электрическая дуга – наиболее подходящая среда для таких ре-

акций, которые не могут протекать в обычных условиях по термодинамическим причинам. Можно зажечь плазму в кислороде и использовать высокую реакционную способность получающегося при этом озона. В азотной плазме можно получить такие экзотические соединения, как тетрафторид азота N2F4 или нитрид титана TiN. Водородная плазма проявляет восстанавливающее действие, поэтому её можно применять для вскрытия железных руд. Продолжительность реакций в высокотемпературной плазме крайне мала. Метан, например, при 4 800 – 5 300 K за 1/10000 c на 75 - 80% превращается в ацителен. Главным преимуществом методов плазмохимии является то, что состав исходного сырья может колебаться в широких пределах. Реакции могут протекать и в холодной плазме при температурах ниже 400 K. Интересным примером может послужить азотирование в тлеющем разряде, применяемое для поверхностного упрочнения стали.

Плазма – ещё мало изученный объект не только в физике, но и

в химии (плазмохимии), астрономии и многих других науках. Поэтому важнейшие технические положения физики плазмы до сих пор не вышли из стадии лабораторной разработки. В настоящее время плазма активно изучается т.к. имеет огромное значение для науки и техники. Эта тема интересна ещё и тем, что плазма – четвёртое состояние вещества, о существовании которого люди не подозревали до XX века. Возможно, что плазма и есть тот первоэлемент, который так упорно искали алхимики средних веков?         




Использованная литература:



1.     Арцимович Л.А. Элементарная физика плазмы, М, Атомиздат, 1966.

2.     Вурзель Ф.Б., Полак Л.С. Плазмохимия, М, Знание, 1985.

3.     Ораевский Н.В. Плазма на Земле и в космосе, К, Наукова думка, 1980.

4.     Поллер З. Химия на пути в третье тысячелетие, М, Мир, 1982.

5.     Франк-Каменецкий Д.А. Плазма – четвёртое состояние вещества, М, Атомиздат, 1975.

6.     Энциклопедический словарь юного физика, 3 изд., М, Педагогика-Пресс, 1995.


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать