Влияние ультразвука на ЭПР и фотолюминесценцию кристаллов ZnS

Преломляющая рентгеновская линза, как и линза для видимого излучения, позволяет получать уменьшенное изображение источника излучения. Эта особенность линзы используется для получения микро - и нано - пучков от сихротронных источников излучения. Для этих источников, как правило, область пространства, в которой формируется рентгеновский пучок, удалена от объекта исследования на расстояния, значительно превышающих фокусное расстояние линзы. Размер фокусного пятна S1 рентгеновской линзы можно определить, пользуясь следующими формулами:


, (2)

, (3)


где a - расстояние от источника излучения до линзы, b - расстояние от линзы до плоскости изображения, S - размер источника излучения. Если источник излучения удален достаточно далеко, то размер изображения источника в идеале приближается к размеру дифракционного пятна, радиус которого Rdif рассчитывается по следующей формуле


, (4)


где Ra - апертура линзы. Для линз со сферической формой поверхности отрицательную роль играют сферические аберрации, приводящие к размытию фокального пятна. Эти аберрации можно охарактеризовать величиной rs [3]:


, (5)


где l - длина волны. Смысл этого параметра rs состоит в том, что рентгеновские лучи от удаленного источника, пересекающие линзу на расстоянии rs от оси, фокусируются линзой в дифракционное пятно с радиусом Rdif.

Как правило, для случая сферической линзы соответствующие аберрации приводят к уширению фокального пятна до величины в несколько мкм. Поэтому для получения субмикронных пучков имеет смысл использовать диафрагму с радиусом отверстия, равным rs. В этом случае размер пучка в фокальной плоскости для случая удаленного источника будет определяться формулой (5), рассчитанной для Ra = rs. Например, для преломляющей линзы, состоящей из 100 сферических микролинз из эпоксидной смолы с радиусом кривизны поверхности, равным 100 мкм, фокусное расстояние равно 13 см для фотонов с энергией 8 кэВ. Параметр rs для данного случая равен 30 мкм. Указанная линза, оснащенная диафрагмой с диаметром отверстия, равным 60 мкм (2rs), позволяет сфокусировать рентгеновские лучи от удаленного источника в пятно размером 2Rdif = 400 нм.

Чтобы проиллюстрировать возможности преломляющей оптики, в таблице 1 приведены параметры синхротронов SSRL (США), APS (США), ANKA (Германия), ESRF (Франция), на которых испытывались линзы, разработанные в НИИПФП им.А.Н. Севченко БГУ. В графе "размер источника" указаны размеры источника (FWHM) в двух направлениях - вертикальном и горизонтальном.


Таблица 1. Параметры синхротронов, на которых испытывались рентгеновские линзы.

Название синхротрона, номер линзы

Расстояние от источника до линзы, м

Размер источника излучения, мкм Х мкм

Энергия фотонов

SSRL, линза № 1

16,8

400 Х 1700

7 кэВ, 8 кэВ

APS, линза № 2

58

23 Х 97

18 кэВ,20 кэВ

ANKA, линза № 3

12,7

250 Х 800

 12 кэВ, 14 кэВ

ESRF, линза № 4

55

80 Х 250

18 кэВ


В таблице 2 суммированы результаты измерений фокусного расстояния и фокально пятна для линз №№1-4, которые отличаются числом микролинз. Линза №1 содержит 102 сферические микролинзы, линза №2 - 349 микролинз, линза №3 - 224 микролинзы, линза №4 - 112 микролинз. Радиус кривизны поверхности у всех линз равен 100 мкм.


Таблица 2. Результаты измерений фокусного расстояния и фокального пятна линз №№ 1-4.

Номер линзы

1

1

2

2

3

3

4

Энергия фотонов, кэВ

8

7

18

20

12

14

18

Число микролинз в линзе

102

102

349

349

224

224

112

Радиус кривизны линзы, мкм

100

100

100

100

100

100

100

Измеренное расстояние до плоскости изображения, мм

140

100

208

250

146

195

575

Рассчитанное расстояние до плоскости изображения, мм

126

97

192

240

147

195

590

Измеренное фокусное пятно, мкм

2.7

4

1.5

2.1

2.2

3.0

2.7

Рассчитанный размер фокусного пятна, мкм

3.2

2.7

0.08

0.1

2.5

3.3

0.8

Измеренное пропускание линзы,%

27

5

39

46

9.5

21.5

--


Размер пучка в фокальной плоскости для линз № 1 и № 2 определялся методом "ножа", для линзы № 3 - методом сканирования в пределах флуоресцентной мишени, для линзы № 4 - с использованием CCD - камеры. Размер пучка приведен только для измерения в одном направлении - вертикальном.

К настоящему времени довольно подробно изучен зонный метамагнитный переход в соединениях типа Co2, в которых R¢ и R¢¢ - либо легкие редкоземельные металлы, либо тяжелые. Переходы и в тех и в других системах объясняются на основе модели эффективного критического поля Heff, действующего со стороны подсистемы локализованных f-электронов R-ионов на подсистему коллективизированных электронов, образованную, главным образом, d-электронами кобальта. Согласно этой модели зонный метамагнитный переход имеет место, если величина эффективного поля превышает критическое значение H » 70 Тл. В отсутствие внешнего магнитного поля величина Heff пропорциональна намагниченности R-подсистемы. Как известно, в соединениях RCo2 с легкими редкоземельными ионами магнитные моменты R - и Co-подсистем параллельны между собой, а в соединениях с тяжелыми РЗМ эти моменты упорядочены антипараллельно. С точки зрения указанной модели представляет интерес исследование магнитного состояния соединений Co2, в которых концентрации R¢ и R¢¢ подобраны так, что суммарная намагниченность ионов R¢ и R¢¢ равна (или близка к) нулю.

В данной работе представлены результаты нейтронографических исследований соединений Nd1-xTbxCo2 (0 £ х £ 1). Поликристаллические образцы были получены индукционной плавкой с последующим гомогенизирующим отжигом при 850 ˚С в течение 50 часов. Аттестация образцов проводилась с помощью металлографического, рентгенографического и нейтронографического анализов. Во всех образцах фаза RCo2 является основной, содержание примесных фаз (RCo3 и R2O3) не превышает 5%. Температурные зависимости электросопротивления измерялись четырехконтактным потенциометрическим методом на образцах с размерами около 1 × 1 × 6 мм3. Нейтронографический эксперимент проведен на дифрактометре Д-2, установленном на одном из горизонтальных каналов реактора ИВВ-2М (г. Заречный), с длиной волны нейтронов l = 1.805Ǻ. Результаты расчета нейтронограмм, измеренных при комнатной температуре, позволяют считать, что во всех исследованных нами соединениях Nd1-xTbxCo2 основная фаза имеет кристаллическую структуру типа MgCu2 (пространственная группа Fd3m). Параметр решетки a равномерно уменьшается с увеличением x, что связано с различием ионных радиусов Nd и Tb. Из кривых температурной зависимости электросопротивления для соединений Nd1-xTbxCo2 были получены температуры Кюри TC для каждого сплава.

Результаты анализа нейтронограмм показывают, что охлаждение образцов до 4.2 К сопровождается переходом к ромбоэдрической структуре (пространственная группа R-3m) для составов с х ³ 0.5. Для составов с х £ 0.5 охлаждение до 4.2 К сопровождается переходом к орторомбической структуре (пространственная группа Fddd). На всех нейтронограммах при 4.2 К наблюдаются вклады в рефлексы от магнитного рассеяния. С изменением состава сплавов наиболее заметно изменяется интенсивность рефлекса (111). Параметры кристаллической и магнитной элементарных ячеек совпадают. Магнитная структура соединений Nd1-xTbxCo2 описывается волновым вектором k = 0. Были получены значения намагниченностей редкоземельной mR и кобальтовой mCo подрешеток, приведенные на рис.1 a, b.

Как видно из рис.1, с ростом x величина намагниченности mR вначале уменьшается от ~2.9 mБ практически до нуля при x » 0.22, а затем увеличивается по модулю до ~8.2 mБ при x » 1.0. Такое поведение mR (x) становится понятным, если принять во внимание, что магнитный момент иона Tb примерно в три раза больше, чем момент иона Nd, и то, что в соответствии с моделью антиферромагнитного упорядоче-ния моментов ионов R¢ и R² в кубических интерметаллидах типа R¢1-xR²xM2 [1] следует ожидать антипараллельного упорядочения полных моментов ионов Nd и Tb в интерметаллиде Nd1-xTbxCo2. С ростом концентрации x увеличивается и намагниченность mCo (см. Рис.1b), что согласуется с представлениями о метамагнитной природе зонной подсистемы. Как известно, в случае соединений типа RCo2 поведение зонной метамагнитной подсистемы может быть описано соотношением [1] mCo = (gJ-1) JRIR-Co, где gJ - фактор Ланде, JR - полный момент иона R, IR-Co - параметр R-Co - обменного взаимодействия. В случае соединений Nd1-xTbxCo2 с ростом x величина (gJ-1) JR увеличивается, (так как спин тербия больше спина неодима), а, следовательно, будет увеличиваться и намагниченность подрешетки Co.

Итак, во всем интервале концентраций x магнитная структура соединений Nd1-xTbxCo2 описывается волновым вектором k = 0. Получено, что намагниченности R - и Co - подрешеток параллельны между собой при x £ 0.22 и антипараллельны при x > 0.22. Концентрационная зависимость намагниченности подрешетки Co подтверждает модель метамагнитного поведения зонной подсистемы в соединениях типа RCo2.


Список литературы

1. И.В. Островский Акустолюминесценция и дефекты кристаллов. Киев: Вища шк., 1993, 219 с.

2. С.А. Омельченко, А.А. Горбань, М.Ф. Буланый, А.А. Тимофеев ЭПР-исследования изменений зарядового состояния Cr по сечению дислокационных трубок в кристаллах ZnS // ФТТ, том 48, вып.5, с.638-642.

3. М.Ф. Буланый, А.Г. Сорокин, А.К. Флоров, А.Н. Хачапуридзе Автоматизированная система измерения спектров люминесценции полупроводников // Тез. докл. IX Науч.-техн. конф. с участием зарубежных специалистов “Датчики и преобразователи информации систем измерения, контроля и управления” - Датчик-97. Гурзуф. 1997. с.351 - 353.



Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать