Вплив процесів деформування на поверхневий шар металів

З метою оцінки можливостей розробленої фізичної моделі був виконаний розрахунок залежності РВЕ від часу випробування на одномірне розтягування міді при трьох різних швидкостях деформування, рис.5. Розрахунок проведено з урахуванням кінетики формування ансамблів нанодефектів в процесі пластичного деформування. У програму обчислень була закладена часова осциляція концентрації нанодефектів.

Було виявлено, що падіння РВЕ при пластичному деформуванні в основному визначається формуванням поверхневих дефектів першого рангу [3]. Осцилюючий характер еволюції поверхневих дефектів і вихід на плато змін РВЕ, що експериментально спостерігається, при граничних пластичних деформаціях викликає необхідність врахування впливу дефектів 2, 3 і 4 рангів. Вплив останніх на РВЕ виявляється в компенсації приросту РВЕ, викликаного зменшенням кількості дефектів 1 рангу. Порівняння розрахункових значень із експериментальними даними показало гарну відповідність.

3. Дослідження структурних змін і зарядового рельєфу поверхні при втомі металевих матеріалів


Проведені виміри значень РВЕ в осьових напрямках зразків, що випробовувалися знакозмінними напруженнями по консольному типу. Дослідження процесу втоми дозволило вперше зробити висновок про існування двох основних стадій структурних змін в кристалічних ґратках поверхневого шару металів: початкова стадія зворотних структурних перебудов, коли величина РВЕ для даної точки поверхні періодично зменшується і збільшується, коливаючись поблизу деякого середнього значення; друга стадія незворотних структурних змін в поверхневому шарі, коли РВЕ в даній точці монотонно зменшується аж до руйнування зразка. Таким чином, на початкових стадіях впливу знакозмінних механічних напружень РВЕ осцилює поблизу деякого значення, що свідчить про зворотність до певного часу процесу накопичення дефектів кристалічної ґратки і про чергування процесів зміцнення - релаксації на цій стадії. В процесі циклічних деформацій на формування енергетичного рельєфу основний вплив має зміна структури металу. Розглядаючи тільки кристалографічні фактори, можна вважати, що до зменшення РВЕ приводить утворення на поверхні заряджених атомних сходинок. Відомо, що при циклічному навантаженні металів активізується вакансійний механізм деформування. Тому на початковій стадії ще можливе згладжування атомарної шорсткості за рахунок притоку вакансій з поверхні. Якщо джерелом цих вакансій будуть підвалини атомарних сходинок, то такий процес, у кінцевому рахунку, еквівалентний поверхневій дифузії. Це приводить до заповнення поверхневих впадин матеріалом поверхневих виступів. Тоді за зростання (відновлення значень) РВЕ в період обернених перебудов відповідає поверхнева дифузія, стимульована циклічними напруженнями.

РВЕ зменшується в тих областях, де прикладені найбільші механічні напруження. З ростом числа циклів виділяються дві характерні ділянки на кривих розподілу РВЕ по поверхні. Перша пов'язана із пластичним деформуванням матеріалу поверхневого шару в зоні максимальних напружень. Важливими особливостями цієї ділянки є локалізованість падіння РВЕ і насичення РВЕ при визначеному наробітку (при певної кількості циклів). Друга ділянка безпосередньо прилягає до першої і відповідає росту РВЕ.

Досліджено вплив проміжної відновлюючої термічної обробки на довговічність жароміцних сталей. Отримано, що проведення відбудовного відпуску після іспитів, що складають 20 - 30 % середньої довговічності, є перспективним способом, який дозволяє істотно збільшити довговічність.

Методом дифракційної електронної мікроскопії досліджені зразки зі сталі ЕП479 після випробуваня на богатоциклову втому при температурі 20 і 500 oС. Структура стали ЕП479 після загартування і відпалу являє собою мартенсит, що складається з пакетів рівнобіжних пластин з високою густиною дислокацій. По границі та усередині первинних зерен аустеніту спостерігали виділення карбідної фази. Аналіз дифракційних картин і темнопольного зображення показав, що це частки типу Ме23C 6, розміром 0,2 - 0,5 мкм. Спостерігалася фрагментація мартенситних пластин. Виявлено, що під дією циклічного навантаження відбувається взаємодія дислокацій з утворенням субзернистої структури. Напружений стан поблизу границь збільшується скупченням дислокацій. Підгорнуті до границь дислокації створюють локальну концентрацію напруг, що може бути провісником утворення субмікротріщин. Перешкодою для переміщення дислокацій є частки фаз, які присутні у сталі. Якщо усередині зерна виділення цих часток відіграють позитивну роль - затримують рух дислокацій до границь, то виділення карбідної фази по границях зерен підсилюють напруженість границь, що сприяє появі субмікротріщин. Не тільки частки фаз перешкоджають переміщенню дислокацій, але й утворення субзеренної структури приводить до більш рівномірного розподілу дислокацій. Знайдено, що під дією циклічного навантаження спостерігається фрагментація мартенситних пластин у структурі сталей, взаємодія дислокацій, їх часткова анігіляція і утворення субзернистої структури. Більшій міцності втоми сталей відповідає відносно однорідна дрібна субструктура.

Якщо металевий зразок зазнає циклічних напружень, то, як відомо, відбувається генерування дислокацій. Цей процес починається при напруженнях, які перевищують певне граничне напруження τs:


, (7)


де μs - модуль зсуву; b - вектор Бюргерса; n - кількість дислокацій у скупченні; ρ0 - початкова густина дислокацій. Народжені дислокації під впливом зовнішніх змінних напружень рухаються в перетинаючих системах ковзання. Частина з них виходить на поверхню. У результаті виходу дислокацій на поверхню утворюються поверхневі сходинки. Ці сходинки несуть електричний заряд і, отже, утворюють електричні диполі. Внесок дислокаційних диполів приводить до зменшення РВЕ. Отримано наступне рівняння для зміни густини дислокацій в процесі випробувань матеріалу на втому:


 (8)


де ρ - густина дислокацій; δ - коефіцієнт розмноження дислокацій; V0 - коефіцієнт пропорційності; U0 - енергія активації руху дислокацій; τm·sin(ω·t) - змінне напруження; tso і tsf початковий і кінцевий моменти дислокаційного руху в межах напівперіоду відповідно; k - стала Больцмана; T - температура. Рівняння (8) було розв`язане чисельно за допомогою ПК для різних значень амплітуди прикладеної напруженості. Густина дислокацій у поверхневому шарі була обчислена для кожного циклу. Результати обчислень густини дислокацій для алюмінію приведено на рис. 8..

Відповідність між експериментальними точками і теоретичною кривою задовільна. Збільшення густини дислокацій супроводжується зменшенням РВЕ. Збільшення РВЕ через збільшення густини сходинок може бути представлено формулою (2). Тоді, густина формування сходинок за цикл визначається густиною дислокацій і швидкістю їх руху:


 (9)


Із експериментальних даних залежності РВЕ від кількості циклів наробки при випробуваннях алюмінію на знакозмінний згин було отримано dn/dN=318 сходинок × цикл-1 × см-2, що узгоджується з літературними даними


4. Закономірності формування енергетичного рельєфу металевої поверхні при контактних взаємодіях і при механічній обробці


У роботі було досліджено залежність контактної провідності 1/R від величини навантаження N у процесі навантаження і розвантаження контактного з'єднання. Також показані залежності, отримані при кінетичному індентуванні різних ділянок поверхні зразка з міді марки М1 за різними режимами навантаження (статичне - “С”; із впливом вібрації - “Д”) і для двох поверхонь: вихідної - “1” і “2” - поверхні, що зазнали стиску за межею течії. На основі регресійного аналізу встановлено, що отримані залежності  апроксимуються показниковою функцією з показником степеня в інтервалі від 0,42 до 0,59. З експериментально обумовленої залежності контактної провідності від контактного навантаження може бути визначено компонент відношення збільшення контактної провідності до зміни навантаження на контактне з'єднання , обумовлений тільки збільшенням числа мікровиступів шорсткості. Ця величина визначається на основі параметрів лінійної регресії ділянок залежності  до  і після  її перегину


 


і характеризує вплив профілю опорної кривої шорсткуватої поверхні на величину фактичної площини контакту (ФПК). При індентуванні поверхні, зміцненої попереднім плоским стиском, злам залежностей не спостерігається. Таке поводження можна пояснити тим, що при індентуванні не зміцненої поверхні до настання пластичного насичення на зростання ФПК істотньо впливає деформація мікровиступів шорсткості.

Після досягнення пластичного насичення ФПК росте завдяки збільшенню контурної площі. У присутності вібрації на вихідній поверхні швидкість росту ФПК і контактної провідності істотно збільшується. В умовах циклічного навантаження відбувається знеміцнення матеріалу, зумовлене підвищеною рухливістю дислокацій поблизу поверхні. При індентуванні з накладенням вібрації в контактній зоні кінетика контактних деформацій визначається, очевидно, конкуренцією процесів зміцнення і знеміцнення. У випадку ж наявності залишкових напружень на вершинах мікровиступів шорсткості на ріст ФПК переважний вплив має збільшення контурної площі на всьому протязі контактного навантаження. Нелінійний характер ФПК від навантаження в цьому випадку обумовлений зміцненням нижчих шарів. Відсутність помітного впливу вібрації на нахил залежності  для зміцненої поверхні свідчить про те, що знеміцнення, яке викликане циклічним навантаженням, відбувається тільки на вершинах мікровиступів, і його кількісна характеристика залежить від величини залишкових напружень на контактуючих ділянках.

Рентгеноструктурне дослідження вихідної поверхні і після деформування стисканням, виявило наявність на них однакових стискуючих залишкових напружень σ = -180 МПа, обумовлених технологічною передісторією матеріалу зразків. Як відзначалося вище, залежності, отримані при кінетичному індентуванні, свідчать про розходження залишкових напружень у поверхневому шарі. Це протиріччя викликане тим, що додаткові напруження зосереджені, головним чином, у вершинах мікровиступів шорсткості, у той же час рентгенівську дифракцію одержано від більш товстого шару (близько 100 мкм). З приведених даних випливає, що зміна КЕО при кінетичному макроіндентуванні відчутна до величини залишкових напружень у тонкому приповерхньому шарі, а саме, до інтегральної мікротвердості шорсткуватого шару - параметру, що безпосередньо визначає кінетику контактної взаємодії. У процесі поступового зняття навантаження відбувається пружне відновлення області контактного деформування. Тому дослід розвантаження становить інтерес для визначення пружних властивостей матеріалу і легше піддається теоретичному опису. Із рішення задачі Герца для пружного зіткнення двох тіл нами був отриманий вираз для ФПК і контактної провідності, у якому ці величини пропорційні N1/2. При розгляді залежності  була встановлена наявність двох лінійних ділянок. Розвантаження при кінетичному макроіндентуванні дозволяє одержувати дані про пружні характеристики деформованих мікровиступів шорсткості і більш глибокого підповерхневого шару.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать