Рис. 11. Схемы дугогасительных устройств с воздушным дутьем
1 – контакты, 2 - изоляционный корпус; 3 — дуга;
4 — изоляционное сопло
Было предложено для ускорения повышения электрической прочности дугового промежутка добавлять в свежий воздух электроотрицательные газы, жадно поглощающие электроны (например, фтор и его соединения). Однако практического использования этого предложения не было.
Простым средством повышения отключающей способности воздушных выключателей и улучшения их эксплуатационных свойств является повышение давления воздуха, применяемое в последних конструкциях.
Воздушные выключатели строятся на все напряжения от 3 до 750 кВ, на номинальные токи до 4 кА (генераторные выключатели до 12 кА) и на широкий диапазон мощностей отключения от 300 MBА (10 кВ) до 50 000 MBА (750 кВ).
В выключателях на большие номинальные токи (рис. 12, , б) имеются главный и дугогасительный контуры, как и в маломасляных выключателях МГ и ВГМ. Основная часть тока во включенном положении выключателя проходит по главным контактам 4, расположенным открыто.
В выключателях для открытой установки дугогасительная камера расположена внутри фарфорового изолятора, причем на напряжение 35 кВ достаточно иметь один разрыв на фазу (рис. 12, в), на 110 кВ — два разрыва на фазу (рис. 12, г). Различие между этими конструкциями состоит в том, что в выключателе 35 кВ изоляционный промежуток создается в дугогасительной камере 2, а в выключателях напряжением 110 кВ и выше после гашения дуги размыкаются контакты отделителя 5 и камера отделителя остается заполненной сжатым воздухом на все время отключенного положения, при этом в дугогасительную камеру сжатый воздух не подается и контакты в ней замыкаются. По конструктивной схеме (рис. 12, г) созданы выключатели серии ВВ на напряжение 110- 500 кВ. Чем выше номинальное напряжение и чем больше отключаемая мощность, тем больше разрывов необходимо иметь в дугогасительной камере и в отделителе (на 330 кВ - восемь; на 500 кВ - десять).
Рис. 12. Конструктивные схемы воздушных выключателей (д—д):
1 — резервуар со сжатым воздухом; 2 — дугогасительная камера; 3 — шунтирующий резистор; 4— главные контакты; 5— отделитель; 6— емкостный делитель напряжения
В рассмотренных конструкциях воздух подается в дугогасительные камеры из резервуара, расположенного около основания выключателя. Если контактную систему поместить в резервуар сжатого воздуха, изолированный от земли, то скорость гашения дуги значительно увеличится. Такой принцип заложен в основу серии выключателей ВВБ (рис. 12, д). В этих выключателях нет отделителя. При отключении выключателя дугогасительная камера 2, являющаяся одновременно резервуаром сжатого воздуха, сообщается с атмосферой через дутьевые клапаны, благодаря чему создается дутье, гасящее дугу. В отключенном положении контакты находятся в среде сжатого воздуха. По такой конструктивной схеме созданы выключатели до 750 кВ. Количество дугогасительных камер (модулей) зависит от напряжения: 110 кВ - одна; 220, 330кВ - две; 500 кВ - четыре; 750 кВ - шесть (в серии ВВБК).
Для равномерного распределения напряжения по разрывам используют омические 3 и емкостные 6 делители напряжения.
В цепях генераторов находят применение специальные выключатели нагрузки (ВНСГ) UH0M = 15 кВ, рассчитанные на включение генераторов при самосинхронизации (при токе равном 115 кА) и выдерживающие большие сквозные токи КЗ (480 кА). Таким выключателем можно включать и отключать генератор под нагрузкой (IНОМ = 12000 А), а также отключать токи КЗ до 31,5 кА. Выключатель ВНСГ компактно встраивается в комплектный токопровод. Гашение дуги осуществляется сжатым воздухом, имеющим давление 0,6 МПа.
Выключатели серии ВВБ (см. рис. 12,д) имеют изолированный от земли резервуар сжатого воздуха, внутри которого находится контактная система. Поэтому собственное время отключения этих выключат сверхвысокого напряжения меньше, чем у выключателей серии ВВ. Давление воздуха в дугогасительной камере в выключателях ВВ из-за постепенной его подачи к моменту гашения дуги равно примерно половине номинального. В выключателях ВВБ давление воздуха к моменту гашения равно номинальному, поэтому эти выключатели имеют большую мощность отключения.
В настоящее время выключатели серии ВВБ модернизированы. Новые выключатели ВВБК (крупномодульные) работают при давлении воздуха 4 МПа, а в камере гашения дуги кроме основного дутья, как и в серии ВВБ, имеется дополнительное дутье через неподвижные контакты с продувкой продуктов горения через полые токоведущие стержни вводов. Это позволило увеличить отключаемый ток до 50 — 56 кА, а количество модулей в полюсе снизить: на 330 кВ вместо четырех модулей (ВВБ) в серии ВВБК — два модуля, на 500 кВ вместо шести модулей — четыре, на 750 кВ вместо восьми — шесть.
Воздушные выключатели имеют следующие достоинства: взрыво- и пожаробезопасность, быстродействие и возможность осуществления быстродействующего АПВ, высокую отключающую способность, надежное отключение емкостных токов линий, малый износ дугогасительных контактов, легкий доступ к дугогасительным камерам, возможность создания серий из крупных узлов, пригодность для наружной и внутренней установки.
Рис. 13. Полюс воздушного выключателя ВНВ-220
1 — резервуар: 2 — изолятор: 3 — механизм привода: 4 — блок шунтирующих резисторов
Недостатками воздушных выключателей являются необходимость компрессорной установки, сложная конструкция ряда деталей и узлов, относительно высокая стоимость, трудность установки встроенных трансформаторов тока.
Наибольшее распространение среди масляных имеют малообъемные выключатели. Опыт показал, что оба типа выключателей — воздушные и малообъемные масляные — пригодны для всех напряжений и мощностей короткого замыкания. Однако внутри определенного диапазона напряжений каждый из этих типов имеет свои преимущества, вытекающие из технических и экономических соображений.
Нормально для отключения больших токов КЗ, оба типа выключателей подходят одинаково хорошо. Отключающая способность выключателей, которые устанавливаются до реактора или за ним, т.е. в кабельных сетях среднего напряжения, должна быть по возможности не зависимой от частоты восстанавливающегося напряжения. В этом отношении определенное преимущество имеют малообъемные масляные выключатели. Лишь воздушный выключатель среднего напряжения с одним разрывом и с двухступенчатым гашением дуги может конкурировать в этих сетях с малообъемными масляными выключателями.
Элегазовые выключатели
Элегазовые выключатели принадлежат к группе газовых выключателей. Известные преимущества, которыми обладают электроотрицательные газы с их высокой электрической прочностью при гашении дуги побудили конструкторов применить в газовых выключателях элегаз (шестифтористую серу SF6). Электроотрицательные газы, такие как элегаз, фреон (CC1F2) и другие, обладают свойством захватывать свободные электроны и присоединять их к своим нейтральным молекулам. Возникающие при этом отрицательные ионы имеют примерно такую же скорость, что и положительные ионы, и поэтому легко рекомбинируют с ними, снова превращаясь в нейтральные молекулы. Вероятность такой рекомбинации на несколько порядков выше, чем вероятность рекомбинации быстрых электронов и медленных положительных ионов.
Другим недостатком элегаза является высокая температура сжижения. При давлении 1,5 МПа температура сжижения элегаза составляет всего 6° С. Чтобы избежать сжижения элегаза в выключателях с высоким давлением гасящей среды предусматривают автоматические нагреватели, поддерживающие необходимую постоянную температуру элегаза.
Наиболее эффективно применение элегаза для гашения дуги в том случае, когда его струя поступает в дуговой промежуток с большой скоростью, т. е. когда осуществляется интенсивное продольное дутье.
В настоящее время разработаны и применяются несколько конструкций элегазовых дугогасящих устройств. Среди них можно отметить дугогасительную камеру интенсивного продольного дутья. Продольное дутье в этом устройстве создается при переходе элегаза из резервуара с высоким давлением (1,5—2,0 МПа), в камеру, где поддерживается низкое давление (0,2—0,3 МПа). После гашения дуги «отработанный» элегаз проходит осуше ние и очистку и перекачивается компрессором в резервуар высокого давления. Вся система циркуляции элегаза является замкнутой.
Рис. 14. Автопневматическое дугогасительное устройство элегазового выключателя
Существуют и другие системы гашения дуги в элегазе, например электромагнитное гашение, при котором дуга перемещается в элегазе под действием магнитного поля и охлаждается при этом встречным потоком газа. Такая система эффективна в выключателях на большие номинальные токи отключения и на напряжения 6—20 кВ.
В нашей стране разработаны конструкции выключателей нагрузки с элегазом на 35, 110, 220 кВ. Выключатели 35 и 110 кВ имеют по одной камере на полюс, в выключателе 220 кВ — две камеры на полюс. Кроме того, разработаны конструкции выключателей на два и три направления. Такой аппарат заменяет два или 4. три выключателя, что дает значительную экономию при установке их на подстанциях.
Достоинства элегазовых выключателей: пожаро- и взрывобезопасность, быстрота действия, высокая отключающая способность, малый износ дугогасительных контактов, возможность создания серий с унифицированными узлами, пригодность для наружной и внутренней установки.
Недостатки: необходимость специальных устройств для наполнения, перекачки и очистки SF6, относительно высокая стоимость SF6.
Автогазовые выключатели
Гашение дуги в автогазовых выключателях производится потоком газов, образующихся при разложении изоляционного материала стенок дугогасительной камеры под действием дуги. Стенки камеры изготовляются из синтетических материалов (органическое стекло, формальдегидная смола, фибра), обладающих хорошими газогенерирующими характеристиками и не склонными к коптеобразованию. Фибра применяется менее широко из-за ее способности сильно деформироваться под влиянием влаги.
В автогазовом дутьевом устройстве со щелевым каналом. Дуга, возникшая при отключении, вытягивается подвижным контактом в узкий кольцевой канал. Давление газов внутри канала повышается до тех пор, пока контакт при своем движении вниз не откроет боковое выхлопное отверстие. После этого начнется интенсивное истечение газов через зону дуги в это отверстие, что и приведет к гашению дуги.
В системах электроснабжения городов и промышленных предприятий достаточно широко распространены выключатели нагрузки ВН-16, ВН-17 на 6—10 кВ с простейшей дугогасительной камерой, имеющей вкладыши из органического стекла. Однако эти выключатели не могут включаться на ток КЗ, равный току динамической стойкости, и допускают сравнительно малое количество отключений номинального тока.
Рис. 15
Достоинства автогазовых выключателей: отсутствие масла; небольшая масса.
Недостатки: быстрый износ твердого дугогасителя, относительно большой износ контактов или их разрушение (в выключателе УПС).
Электромагнитные выключатели
Электромагнитные выключатели для гашения дуги не требуют ни масла, ни сжатого воздуха, что является большим преимуществом их перед другими типами выключателей. Выключатели этого типа выпускают на напряжение 6—10 кВ, номинальный ток до 3600 А и ток отключения до 40 кА.
В этих выключателях дуга горит в воздухе при атмосферном давлении и гасится магнитным дутьем. Дуга при помощи магнитного дутья быстро удлиняется настолько, что напряжение на ней становится выше напряжения сети, и она гаснет.
Магнитное дутье создается электромагнитом, катушка которого включается последовательно в контур дуги. Важным элементом выключателя является камера гашения, которая способствует растягиванию и охлаждению дуги. Конструктивные схемы наиболее распространенных типов щелевых камер гашения электромагнитных выключателей приведены на рис. 15.
На рис. 15, а показана камера с плоской узкой щелью, в которую дуга затягивается магнитным дутьем из широкой части камеры. Отдавая теплоту стенкам камеры, дуга гаснет.
На рис. 15, б изображена камера с зигзагообразной щелью, образованной ребристой поверхностью стенок (лабиринтная камера) и обеспечивающая удлинение дуги до 2 м.
Большое значение для надежной работы электромагнитного выключателя имеет материал стенок камеры гашения. Этот материал должен обладать большой теплоемкостью и жаростойкостью. В настоящее время для этой цели используют жаростойкую керамику. Хорошие результаты дала керамика с небольшим содержанием циркония.
На выхлопной части камеры гашения обычно устанавливается деионизатор, представляющий собой гребенчатую решетку из изолированных друг от друга металлических пластин. Горячие ионизированные газы, выбрасываемые из камеры, попадают в решетку и, охлаждаясь, денонсируются там, ограничивая зону ионизации над верхним срезом камеры. Кроме того, деионизатор демпфирует звуки выхлопа при работе камеры.
Выключатели серии ВЭ на различные токи отключения отличаются размерами дугогасительных камер.
При малых отключаемых токах значение электродинамической силы, затягивающей дугу в камеру, недостаточно и для перемещения дуги используются воздушные поршневые устройства.
Большим преимуществом электромагнитных выключателей является их полная взрыво- и пожаробезопасность. Также к достоинствам можно отнести малый износ дугогасительных контактов, пригодность для работы в условиях частых включений/ отключений, относительно высокая отключающая способность. Большие размеры камеры гашения в этих выключателях ограничивают их применение на высоких напряжениях (выше 15 кВ). У нас в стране электромагнитные выключатели выпускаются на номинальные напряжения 6 и 10 кВ с номинальной мощностью отключения 200 и 400 MBA. Эти выключатели используются главным образом в установках собственных нужд электрических станций и для коммутации косинусных конденсаторных батарей. Также к недостаткам можно отнести сложность конструкции дугогасительной камеры, ограниченный предел номинального напряжения, ограниченная пригодность для наружной установки.
Вакуумные выключатели
В последние годы, кроме хорошо себя зарекомендовавших масляных и воздушных выключателей, в энергетических системах начали применяться выключатели, действие которых основано на совершенно новых принципах гашения дуги. И хотя эти так называемые вакуумные выключатели занимают пока еще очень скромное место среди выключателей высокого напряжения, они несомненно имеют большие перспективы применения на электрических станциях и подстанциях.
В этих выключателях контактная система помещена в глубокий вакуум, примерно 104 Па, вследствие чего они и получили название вакуумных.
Процесс отключения в вакуумном выключателе протекает следующим образом. В момент расхождения контактов площадь их соприкосновения уменьшается, плотность тока резко возрастает, и металл контактов плавится и испаряется в вакууме. При этом между контактами образуется проводящий мостик, состоящий из паров металла электродов. Загорается так называемая вакуумная дуга, которая гаснет при первом же переходе тока через нуль. Электрическая прочность вакуума восстанавливается очень быстро, так как малая плотность газа в колбе выключателя обусловливает исключительно высокую скорость диффузии электрических зарядов из ствола дуги. Уже через 10 мкс после перехода тока через нуль электрическая прочность вакуума достигает своего полного значения 100 МВ/м. Если к этому времени раствор контактов окажется достаточным для того, чтобы электрическая прочность межконтактного промежутка стала больше восстанавливающегося напряжения, дуга погаснет окончательно. В противном случае произойдет повторный пробой промежутка и повторное зажигание дуги.
Достоинства вакуумных выключателей: простота конструкции; высокая степень надежности, высокая коммутационная износостойкость, малые размеры, пожаро- и взрывобезопасность, отсутствие шума при операциях, отсутствие загрязнения окружающей среды, малые эксплуатационные расходы.
Недостатки вакуумных выключателей: сравнительно небольшие номинальные токи и токи отключения, возможность коммутационных перенапряжений при отключении малых индуктивных токов.
Размещено на