Известно восемь типов глюонов. Предполагается, что кварки участвуют также в электромагнитных и слабых взаимодействиях. В электромагнитном взаимодействии кварки не меняют свой цвет и аромат. В слабых взаимодействиях - меняют аромат, но сохраняют цвет. Теория кварков позволяет предложить стройную и гармоничную модель строения атома. Согласно этой модели атом состоит из тяжелого ядра (протоны и нейтроны, связанные глюонными полями) и электронной оболочки. Сейчас теория кварков продолжает развиваться и уточняться, поэтому ее нельзя считать окончательно сформированной.
5. Фундаментальные физические взаимодействия
Способность к взаимодействию - важнейшее и неотъемлемое свойство материи. Именно взаимодействия обеспечивают объединение различных материальных объектов мега-, макро- и микромира в системы. Все известные современной науке силы сводятся к четырем типам взаимодействий, которые называются фундаментальными: гравитационное, электромагнитное, слабое и сильное.
Гравитационное взаимодействие впервые стало объектом изучения физики в XVII веке. Теория гравитации И.Ньютона, основу которой составляет закон всемирного тяготения, стала одной из составляющих классической механики. Закон всемирного тяготения гласит: между двумя телами существует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Любая материальная частица является источником гравитационного воздействия и испытывает его на себе. По мере увеличения массы гравитационные взаимодействия возрастают, т.е. чем больше масса взаимодействующих веществ, тем сильнее действуют гравитационные силы. Силы гравитации - это силы притяжения.
В последнее время физики высказывают предположение о существовании гравитационного отталкивания, которое действовало в самые первые мгновения существования Вселенной, однако эта идея пока не подтверждена. Гравитационное взаимодействие - наиболее слабое из ныне известных. Гравитационная сила действует на очень больших расстояниях, ее интенсивность с увеличением расстояния убывает, но не исчезает полностью. Считается, что переносчиком гравитационного взаимодействия является гипотетическая частица гравитон. В микромире гравитационное взаимодействие не играет существенной роли, однако в макро- и особенно мегапроцессах ему принадлежит ведущая роль.
Электромагнитное взаимодействие стало предметом изучения в физике XIX в. Первой единой теорией электромагнитного поля выступила концепция Дж.Максвелла. В отличие от гравитационной силы электромагнитные взаимодействия существуют только между заряженными частицами: электрическое поле - между двумя покоящимися заряженными частицами, маг
нитное - между двумя движущимися заряженными частицами. Электромагнитные силы могут быть как силами притяжения, так и силами отталкивания. Одноименно заряженные частицы отталкиваются, разноименно притягиваются. Переносчиками этого типа взаимодействия являются фотоны. Электромагнитное взаимодействие проявляется в микро-, макро- и мегамире.
В середине XX в. была создана квантовая электродинамика — теория электромагнитного взаимодействия, которая удовлетворяла основным принципам квантовой теории и теории относительности. В 1965г. ее авторы С.Томанага, Р.Фейнман и Дж.Швингер были удостоены Нобелевской премии. Квантовая электродинамика описывает взаимодействие заряженных частиц — электронов и позитронов.
Слабое взаимодействие было открыто только в XX в., в 60-е гг. построена общая теория слабого взаимодействия. Слабое взаимодействие связано с распадом частиц, поэтому его открытие последовало только вслед за открытием радиоактивности. При наблюдении радиоактивного распада частиц обнаружились явления, которые, казалось бы, противоречили закону сохранения энергии. Дело в том, что в процессе распада часть энергии «исчезала». Физик В.Паули предположил, что в процессе радиоактивного распада вещества вместе с электроном выделяется частица, обладающая высокой проникающей способностью. Позже эта частица была названа «нейтрино». Оказалось, что в результате слабых взаимодействий нейтроны, входящие в состав атомного ядра, распадаются на три типа частиц: положительно заряженные протоны, отрицательно заряженные электроны и нейтральные нейтрино. Слабое взаимодействие значительно меньше электромагнитного, но больше гравитационного, и в отличие от них распространяется на небольших расстояниях — не более 10-22 см. Именно поэтому долгое время слабое взаимодействие экспериментально не наблюдалось. Переносчиками слабого взаимодействия являются бозоны.
В 70-е гг. XXв. была создана общая теория электромагнитного и слабого взаимодействия, получившая название теории электрослабого взаимодействия. Ее создатели С.Вайнберг, А.Салам и С.Глэшоу в 1979г. получили Нобелевскую премию. Теория электрослабого взаимодействия рассматривает два типа фундаментальных взаимодействий как проявления единого, более глубокого. Так, на расстояниях более 10-17 см преобладает электромагнитный аспект явлений, на меньших расстояниях в одинаковой степени важны и электромагнитный, и слабый аспекты. Создание рассматриваемой теории означало, что объединенные в классической физике XIX веке, в рамках теории Фарадея—Максвелла электричество, магнетизм и свет, в последней трети XX в. дополнились феноменом слабого взаимодействия.
Сильное взаимодействие также было открыто только в XXв. Оно удерживает протоны в ядре атома, не позволяя им разлететься под действием электромагнитных сил отталкивания. Сильное взаимодействие осуществляется на расстояниях не более чем 10-13 см и отвечает за устойчивость ядер. Ядра элементов, находящихся в конце таблицы Д.И.Менделеева, неустойчивы, поскольку их радиус велик и, соответственно, сильное взаимодействие теряет свою интенсивность. Такие ядра подвержены распаду, который и называется радиоактивным. Сильное взаимодействие ответственно за образование атомных ядер, в нем участвуют только тяжелые частицы: протоны и нейтроны. Ядерные взаимодействия не зависят от заряда частиц, переносчиками этого типа взаимодействий являются глюоны. Глюоны объединены в глюонное поле (по аналогии с электромагнитным), благодаря которому и осуществляется сильное взаимодействие. По своей мощи сильное взаимодействие превосходит другие известные и является источником огромной энергии. Примером сильного взаимодействия выступают термоядерные реакции на Солнце и других звездах. Принцип сильного взаимодействия использован при создании водородного оружия.
Теорию сильного взаимодействия называют квантовой хромодинамикой. Согласно этой теории сильное взаимодействие есть результат обмена глюонами, в результате чего обеспечивается связь кварков в адронах. Квантовая хромодинамика продолжает развиваться, и хотя ее нельзя пока считать законченной концепцией сильного взаимодействия, тем не менее, эта физическая теория имеет прочную экспериментальную базу.
В современной физике продолжаются поиски единой теории, которая позволила бы объяснить все четыре типа фундаментальных взаимодействий. Создание подобной теории означало бы также построение единой концепции элементарных частиц. Этот проект получил название «Великое объединение». Основанием для убежденности, что такая теория возможна, является то обстоятельство, что на малых расстояниях (менее 10-29 см) и при большой энергии (более 1014 ГэВ) электромагнитные, сильные и слабые взаимодействия описываются одинаковым образом, что означает общность их природы. Однако этот вывод имеет пока только теоретический характер, проверить его экспериментально до сих пор не удалось.
Различные конкурирующие между собой теории Великого объединения по-разному интерпретируют космологию. Например, предполагается, что в момент рождения нашей Вселенной существовали условия, в которых все четыре фундаментальных взаимодействия проявлялись одинаковым образом. Создание теории, объясняющей на единых основаниях все четыре типа взаимодействий, потребует синтеза теории кварков, квантовой хромодинамики, современной космологии и релятивистской астрономии.
Однако поиск единой теории четырех типов фундаментальных взаимодействий не означает, что невозможно появление иных трактовок материи: открытие новых взаимодействий, поиск новых элементарных частиц и т.п. Некоторые физики высказывают сомнение в возможности единой теории. Так, создатели синергетики И.Пригожий и И.Сгенгерс в книге «Время, хаос, квант» пишут; «надежду на построение такой "теории всего", из которой можно было бы вывести полное описание физической реальности, придется оставить» и обосновывают свой тезис закономерностями, сформулированными в рамках синергетики.
Важную роль в понимании механизмов взаимодействия элементарных частиц, их образования и распада сыграли законы сохранения. Помимо законов сохранения, действующих в макромире (закона сохранения энергии, закона сохранения импульса и закона сохранения момента импульса), в физике микромира были обнаружены новые: закон сохранения барионного, лептонного зарядов, странности и др.
Каждый закон сохранения связан с какой-либо симметрией в окружающем мире. В физике под симметрией понимается инвариантность, неизменность системы относительно ее преобразований, т.е. относительно изменений ряда физических условий. Немецким математиком Эммой Нетер была установлена связь между свойствами пространства и времени и законами сохранения классической физики. Фундаментальная теорема математической физики, называемая теоремой Нетер, гласит, что из однородности пространства следует закон сохранения импульса, из однородности времени — закон сохранения энергии, а из изотропности пространства — закон сохранения момента импульса. Эти законы носят фундаментальный характер и справедливы для всех уровней существования материи.
Закон сохранения и превращения энергии утверждает, что энергия не исчезает и не появляется вновь, а лишь переходит из одной формы в другую. Закон сохранения импульса постулирует неизменность импульса замкнутой системы с течением времени. Закон сохранения момента импульса утверждает, что момент импульса замкнутой системы остается неизменным с течением времени. Законы сохранения являются следствием симметрии, т.е. инвариантности, неизменности структуры материальных объектов относительно преобразований, или изменения физических условий их существования.
Итак, законы сохранения энергии и импульса связаны с однородностью времени и пространства, закон сохранения момента импульса - с симметрией пространства относительно вращений. Законы сохранения зарядов связаны с симметрией относительно специальных преобразований волновых функций, описывающих частицы.
Список использованной литературы:
1. |
Ансельм А.И. Очерки развития физической теории в первой трети 20 века. М.: Наука, ГРФМЛ, 1986. |
2. |
Гейзенберг В. Картина природы в современной физике// Природа. (1987). №6 |
3. |
Гейзенберг В. Физика и философия. Часть и целое. М., 1989 |
4. |
Гинзбург В.Л. О физике и астрофизике. М., 1980 |
5. |
Грушевицкая Т.Г., Садохин А.П. Концепции современного естествознания. М.: Высшая школа., 1998, 592с. |
6. |
Карнап Р. Философские основания физики. М., 1971, 390с. |
7. |
Карпенков С.Х. Концепции современного естествознания. М.:, ЮНИТИ, 1997, 520с. |
8. |
Лобачевский Н.И., Риман Б., Клиффорд В., Эйнштейн А., Мах Э., Гроссман М., Гильберт Д., Шварцшильд К., Керр Р., Петров А.З., Фок В.А., де Ситтер В., Фридман А.А., и др. Альберт Эйнштейн и теория гравитации, 1979, 592 с. |
9. |
Найдыш В.М. Концепции современного естествознания. М., 2002, 704с. |
10. |
Хелзин Ф., Мартин А. Лептоны и кварки. М., 1987 |
11. |
Шредингер Э. Новые пути к физике: статьи и речи, Наука.: 1971 |
12. |
Шредингер Э. Что такое жизнь? С точки зрения физика. - М., 1972 |