DI’к.о.» Iк.о·(b+1)=35(49+1)=1,75мА.
Обратный ток коллектора возрос на 35 мкА, а общий ток — на 1,75 мА. С таким током уже нельзя не считаться.
Возрастание тока коллектора нежелательно по двум причинам. Во-первых, оно приведет к увеличению падения напряжения на резисторе Rэ-Напряжение между коллектором и эмиттером транзистора при этом резко уменьшится и может упасть почти до нуля. Во-вторых, увеличение тока коллектора влечет за собой изменение параметров транзистора и в первую очередь коэффициента усиления b.
Обе разобранные причины и заставили нас прибегнуть к усложнению схемы, чтобы повысить стабильность рабочего коллекторного тока при изменении температуры. Вот как теперь она работает.
Увеличение сквозного тока коллектора DI’к.о (см. приложения, рисунок 12 «а») при повышении температуры приведет к увеличению падения напряжения на резисторе Кэ. Вследствие этого напряжение между точками 1 и 2 уменьшится, что приведет к уменьшению тока Iб в резисторе Rб , а также и в базе транзистора. Составляющая тока коллектора IK = Iбb при этом уменьшится. Зная, что полный ток коллектора Iк состоит из двух составляющих
Iк=I’к.о.+Iб·b
можно сделать такой вывод: температурные изменения первого слагаемого (I’к.о) приведут к обратным по знаку изменениям второго слагаемого (Iб·b). При правильном выборе параметров схемы оба слагаемых в некоторой мере компенсируют друг друга так, что коллекторный ток транзистора при этом остается неизменным.
Усилитель — это, пожалуй, самый простой «черный ящик». К тому же он чаще других встречается в кибернетических конструкциях.
Нигде обратная связь так широко не используется, как в радиоэлектронике.
Каждый из двух каскадов схемы «б» (см. приложения, рисунок 12) работает точно так же, как схема «а». Их работа стабилизируется отрицательной обратной связью за счет резисторов Rэ1 и Rэ2- Но этого оказалось недостаточно. За счет резистора Ro.c оба каскада охвачены еще третьей обратной связью. Разберем, как она работает.
Допустим, по каким-либо причинам, включая повышение температуры, несколько возрос коллекторный ток транзистора T1.Тут же уменьшится напряжение между коллектором первого транзистора и общим проводом, и как следствие упадет ток базы второго транзистора. При этом коллекторный ток Т2 также уменьшится, что повлечет уменьшение падения напряжения на резисторе Rэ2. Поскольку ток базы транзистора T1 в основном определяется этим напряжением, то он также уменьшится.
Кольцо обратной связи замкнулось, в результате чего коллекторный ток первого транзистора восстановит свое прежнее значение. В схеме «б» мы имеем дело с отрицательной обратной связью. Устойчивость работы схемы обеспечена.
За счет отрицательной обратной связи, охватывающей оба каскада Ro.c, схема «б» стабильно работает при изменении окружающей температуры от -10°С до +40°С. Общий коэффициент усиления равен 1000. По той же причине входное сопротивление усилителя повысилось с 500—1000 Ом до 1,5—2,0 кОм.
Кольцо обратной связи замкнулось, в результате чего коллекторный ток первого транзистора восстановит свое прежнее значение. В схеме «б» мы имеем дело с отрицательной обратной связью. Устойчивость работы схемы обеспечена.
За счет отрицательной обратной связи, охватывающей оба каскада Ro.c, схема «б» стабильно работает при изменении окружающей температуры от — 10°С до +40°С. Общий коэффициент усиления равен 1000. По той же причине входное сопротивление усилителя повысилось с 500—1000 Ом до 1,5—2,0 кОм.
Режим работы второго транзистора выбирается из условия, чтобы напряжение между коллектором Т2 и общим проводом было равно половине питающего напряжения. Это достигается подбором величины резистора Rэ1 в пределах 500—1000 Ом. Величина коллекторного напряжения первого транзистора не критична и может меняться в зависимости от b транзистора от 2 до 4 В.
Усилитель одинаково хорошо усиливает сигнал с частотами от 100 Гц до 10 кГц.
Очень интересна в работе схема «в» (см. приложения, рисунок 12). В литературе она называется эмиттерным повторителем. На эмиттерном резисторе Rэ полностью повторяется входной сигнал с коэффициентом передачи, несколько меньшим единицы.
Тут же возникает вопрос: для чего нужна такая схема, если она не усиливает сигнала?
Эмиттерный повторитель — это каскад, имеющий большое входное сопротивление (несколько сотен килоом) и очень малое выходное сопротивление, равное 5—20 Ом. Это, собственно, не усилитель, а трансформатор сопротивлений. Ставится он там, где нужно в схеме иметь низкоомный выход и высокоомный вход.
Входное сопротивление эмиттерного повторителя примерно равно Rвх»Rэ·b. Сопротивление Rэ рекомендуется брать в пределах 1—4,7 кОм, a b = 20—50. При этом Rвх будет лежать в пределах 20—250 кОм.
Ни в одной другой схеме нет такой отрицательной обратной связи, как в эмиттерном повторителе. Здесь она равна 100%. Это значит, что весь сигнал с выхода схемы полностью прикладывается к ее входу. Схема работает очень стабильно. Разберите схему обратной связи самостоятельно. Необходимый опыт у вас теперь есть.
Рассмотрев работу всех трех схем, «а», «б» и «в» (см. приложения, рисунок 12), можно сделать следующий вывод: отрицательная обратная связь всегда повышает устойчивость работы аппаратуры. Этого никогда не следует забывать, и надо стараться как можно чаще ею пользоваться.
Рассказывая об использовании обратной связи в радиоэлектронных схемах, следует напомнить о генераторах синусоидальных колебаний. Без них теперь не обходится ни радиопередатчик, ни радиоприемник. Схема, показанная на рисунке 3, г, есть генератор звуковых частот. Ее подробный разбор будет дан при описании платы «детектор — звуковой генератор».
Изготовление платы «усилитель сигнала» (см. приложения, рисунок 11) начинается с основания. Вырезается оно из куска гетинакса или текстолита толщиной 2,0—2,5 мм. Размеры берутся из рисунка 13 (см. приложения). Монтажными стойками служат кусочки медной проволоки (гвоздики) толщиной 1 мм, вставленные в отверстия платы, залитые на рисунке черной краской.
Данные деталей берутся из электрической схемы. Резистор R5 пока не ставить. Сделать это при налаживании схемы.
Транзисторы T1 —T3 перед установкой в схему проверяются на тестере. Коэффициент усиления должен находиться в пределах 50—100. Подойдут не только транзисторы, указанные на схеме, но и П13 —П16.
Налаживание платы сводится к подбору резистора R5. Временно ставится вместо него переменный резистор 1,5—2,2 кОм. Нужно подобрать величину так, чтобы вольтметр постоянного тока, подключенный параллельно R8, показывал 4,5 В. Далее переменный резистор заменяется постоянным. Его величина должна быть равна сопротивлению переменного резистора, замеренному на омметре.
Для окончательной проверки работы схемы на вход усилителя (точки 2—3) от любого звукового генератора подаётся сигнал в 1 мВ с частотой 1000 Гц.
Движок переменного резистора R3 поставьте в крайнее верхнее положение. На выходе (точки 6—7) вольтметр переменного тока должен показать не менее 1 В.
Разделив показания прибора на 1 мВ, вы получите величину коэффициента усиления усилителя. Как уже говорилось, он не должен быть меньше 1000. В крайнем нижнем положении движка резистора R3 вольтметр покажет отсутствие сигнала.
Усилитель мощности
Не всегда от усилителя требуется, чтобы он усиливал сигнал по напряжению. Иногда как раз все наоборот, на вход подается сигнал, больший по амплитуде, чем снимается с выхода.
Значит, такой усилитель вовсе не усиливает? Нет, усиливает. Только усиливает он сигнал не по напряжению, а по мощности. На вход его поступает сигнал незначительной мощности, ну, скажем, в несколько микроватт (мкВт), а с выхода снимаются сотни милливатт (мВт), а то и целые ватты (Вт).
Выходная мощность нашего усилителя (см. приложения, рисунок 14) составляет 0,2—0,25 Вт. Питается схема от любого источника постоянного тока напряжением 9—12 В. Одним из вариантов питания являются две последовательно соединенные батареи от карманного фонаря типа 3336Л.
Усилитель потребляет ток 30—35 мА в режиме максимальной мощности. Выход усилителя рассчитан на работу с электродинамическим громкоговорителем, имеющим сопротивление звуковой катушки 6—10 Ом. Нам подойдут малогабаритные громкоговорители типа 0,1 ГД, 0,15ГД, 0,2ГД и 0,25ГД. Входное сопротивление усилителя составляет 2 кОм. Чувствительность, соответствующая номинальной мощности, равна 0,2—0,3 В.
Схема (см. приложения, рисунок 14) имеет один каскад предварительного усиления напряжения на транзисторе Т1 и выходной двухтактный каскад, работающий в режиме класса В на транзисторах Т2 и Т3.
Выбранная схема выходного каскада делает усилитель очень экономичным по питанию. Транзисторы Т2 и Т3 работают при токе покоя коллектора в несколько миллиампер. Когда на схему не подается никакого сигнала, ток коллектора Т2 и Т3 равен 1—2 мА.
Пожалуй, самыми ответственными деталями усилителя являются трансформаторы Тр1 и Тр2. При их изготовлении нужно быть особенно внимательными. Лучше всего купить их в магазине. Междукаскадный трансформатор и выходной трансформатор — от карманных приемников «Гауя», «Селга», «Сокол», «Альпинист», «Атмосфера» или «Юпитер». Можно использовать и другие типы трансформаторов от малогабаритных приемников, лишь бы их намоточные данные были близки к приводимым ниже.
Самодельный междукаскадный трансформатор Тр1 выполнен на сердечнике из пермаллоевых пластин Ш-6 или Ш-8, толщина набора —6 мм. Первичная обмотка содержит 2000 витков провода ПЭ 0,1. Вторичная обмотка состоит из двух секций по 500 витков провода ПЭ 0,1 в каждой.
Выходной трансформатор Тр2 собирается на таком же сердечнике, что и междукаскадный. Первичная обмотка содержит две секции по 400 витков провода ПЭ 0,14. Вторичная обмотка имеет 100 витков провода ПЭ 0,35. Когда трансформаторы полностью собраны, проверьте их обмотки на обрыв.
Данные остальных деталей усилителя мощности приведены на рисунке 9. Транзисторы Т1—Т3 перед тем, как впаивать в схему, обязательно проверьте на тестере. Нам подойдут транзисторы с коэффициентом усиления от 30 до 60. Обратите обязательно внимание на начальный ток коллектора Iк.н. Отберите те транзисторы, у которых Iк.н. не превышает 5 мкА.
Вся электрическая схема, включая два трансформатора, монтируется на гетинаксовой или текстолитовой плате размером 120X80 мм, толщиной 2,0—2,5 мм.
По рисунку 6, а на плате произведите разметку отверстий. Те из них, что залиты краской, просверлите сверлом диаметром 1 мм. Затем во все миллиметровые отверстия вставьте кусочки медного провода (гвоздики) диаметром 1 мм и длиной 10 мм.
Расположение деталей на плате и сам монтаж сделайте строго по рисунку 15, б (см. приложения). Особенно внимательны будьте при распайке выводных концов трансформаторов. Напутаете в их подключении, усилитель работать не будет. Отыскать такую ошибку бывает трудно даже опытному инженеру, в распоряжении которого имеется вся необходимая измерительная аппаратура.