The base unit was essentially a thick keyboard with 4 KB of RAM and 4 KB of
ROM (which included BASIC). An optional expansion box that connected by
ribbon cable allowed for memory expansion. A Pink Pearl eraser was standard
equipment to keep those ribbon cable connections clean.
Much of the first software for this system was distributed on
audiocassettes played in from Radio Shack cassette recorders.
Osborne 1 Portable
By the end of the 1970s, garage start-ups were pass. Fortunately there were
other entrepreneurial possibilities. Take Adam Osborne, for example. He
sold Osborne Books to McGraw-Hill and started Osborne Computer. Its first
product, the 24-pound Osborne 1 Portable, boasted a low price of $1795.
More important, Osborne established the practice of bundling software - in
spades. The Osborne 1 came with nearly $1500 worth of programs: WordStar,
SuperCalc, BASIC, and a slew of CP/M utilities.
Business was looking good until Osborne preannounced its next version while
sitting on a warehouse full of Osborne 1S. Oops. Reorganization under
Chapter 11 followed soon thereafter.
Xerox Star
This is the system that launched a thousand innovations in 1981. The work
of some of the best people at Xerox PARC (Palo Alto Research Center) went
into it. Several of these - the mouse and a desktop GUI with icons - showed
up two years later in Apple`s Lisa and Macintosh computers. The Star wasn't
what you would call a commercial success, however. The main problem seemed
to be how much it cost. It would be nice to believe that someone shifted a
decimal point somewhere: The pricing started at $50,000.
IBM PC
Irony of ironies that someone at mainframe-centric IBM recognized the
business potential in personal computers. The result was in 1981 landmark
announcement of the IBM PC. Thanks to an open architecture, IBM's clout,
and Lotus 1-2-3 (announced one year later), the PC and its progeny made
business micros legitimate and transformed the personal computer world.
The PC used Intel`s 16-bit 8088, and for $3000, it came with 64 KB of RAM
and a 51/4-inch floppy drive. The printer adapter and monochrome monitor
were extras, as was the color graphics adapter.
Compaq Portable
Compaq's Portable almost single-handedly created the PC clone market.
Although that was about all you could do with it single-handedly - it
weighed a ton. Columbia Data Products just preceded Compaq that year with
the first true IBM PC clone but didn't survive. It was Compaq's quickly
gained reputation for engineering and quality, and its essentially 100
percent IBM compatibility (reverse-engineering, of course), that
legitimized the clone market. But was it really designed on a napkin?
Radio Shack TRS-80 Model 100
Years before PC-compatible subnotebook computers, Radio Shack came out with
a book-size portable with a combination of features, battery life, weight,
and price that is still unbeatable. (Of course, the Z80-based Model 100
didn't have to run Windows.)
The $800 Model 100 had only an 8-row by 40-column reflective LCD (large at
the time) but supplied ROM-based applications (including text editor,
communications program, and BASIC interpreter), a built-in modem, I/O
ports, nonvolatile RAM, and a great keyboard. Wieghing under 4 pounds, and
with a battery life measured in weeks (on four AA batteries), the Model 100
quickly became the first popular laptop, especially among journalists.
With its battery-backed RAM, the Model 100 was always in standby mode,
ready to take notes, write a report, or go on-line. NEC`s PC 8201 was
essentially the same Kyocera-manufectured system.
Apple Macintosh
Whether you saw it as a seductive invitation to personal computing or a cop-
out to wimps who were afraid of a command line, Apple`s Macintosh and its
GUI generated even more excitement than the IBM PC. Apple`s R&D people were
inspired by critical ideas from Xerox PARK (and practiced on Apple`s Lisa)
but added many of their own ideas to create a polished product that changed
the way people use computers.
The original Macintosh used Motorola's 16-bit 68000 microprocessor. At
$2495, the system offered a built-in-high-resolution monochrome display,
the Mac OS, and a single-button mouse. With only 128 KB of RAM, the Mac was
underpowered at first. But Apple included some key applications that made
the Macintosh immediately useful. (It was MacPaint that finally showed
people what a mouse is good for.)
IBM AT
George Orwell didn't foresee the AT in 1984. Maybe it was because Big Blue,
not Big Brother, was playing its cards close to its chest. The IBM AT set
new standards for performance and storage capacity. Intel`s blazingly fast
286 CPU running at 6 MHz and 16-bit bus structure gave the AT several times
the performance of previous IBM systems. Hard drive capacity doubled from
10 MB to 20 MB (41 MB if you installed two drives - just donut ask how they
did the math), and the cost per megabyte dropped dramatically.
New 16-bit expansion slots meant new (and faster) expansion cards but
maintained downward compatibility with old 8-bit cards. These hardware
changes and new high-density 1.2-MB floppy drives meant a new version of PC-
DOS (the dreaded 3.0).
The price for an AT with 512 KB of RAM, a serial/parallel adapter, a high-
density floppy drive, and a 20-MB hard drive was well over $5000 - but much
less than what the pundits expected.
Commondore Amiga 1000
The Amiga introduced the world to multimedia. Although it cost only $1200,
the 68000-based Amiga 1000 did graphics, sound, and video well enough that
many broadcast professionals adopted it for special effects. Its
sophisticated multimedia hardware design was complex for a personal
computer, as was its multitasking, windowing OS.
Compaq Deskrpo 386
While IBM was busy developing (would “wasting time on” be a better phrase?)
proprietary Micro Channel PS/2 system, clone vendors ALR and Compaq
wrestled away control of the x86 architecture and introduced the first 386-
based systems, the Access 386 and Deskpro 386. Both systems maintained
backward compatibility with the 286-based AT.
Compaq's Deskpro 386 had a further performance innovation in its Flex bus
architecture. Compaq split the x86 external bus into two separate buses: a
high-speed local bus to support memory chips fast enough for the 16-MHz
386, and a slower I/O bus that supported existing expansion cards.
Apple Macintosh II
When you first looked at the Macintosh II, you may have said, “But it looks
just like a PC. ”You would have been right. Apple decided it was wiser to
give users a case they could open so they could upgrade it themselves. The
monitor in its 68020-powered machine was a separate unit that typically sat
on top of the CPU case.
Next Nextstation
UNIX had never been easy to use , and only now, 10 years later, are we
getting back to that level. Unfortunately, Steve Job's cube never developed
the software base it needed for long-term survival. Nonetheless, it
survived as an inspiration for future workstations.
Priced at less than $10,000, the elegant Nextstation came with a 25-MHz
68030 CPU, a 68882 FPU, 8 MB of RAM, and the first commercial magneto-
optical drive (256-MB capacity). It also had a built-in DSP (digital signal
processor). The programming language was object-oriented C, and the OS was
a version of UNIX, sugarcoated with a consistent GUI that rivaled Apple`s.
NEC UltraLite
Necks UltraLite is the portable that put subnotebook into the lexicon. Like
Radio Shack's TRS-80 Model 100, the UltraLite was a 4-pounder ahead of its
time. Unlike the Model 100, it was expensive (starting price, $2999), but
it could run MS-DOS. (The burden of running Windows wasn't yet thrust upon
its shoulders.)
Fans liked the 4.4-pound UltraLite for its trim size and portability, but
it really needed one of today's tiny hard drives. It used battery-backed
DRAM (1 MB, expandable to 2 MB) for storage, with ROM-based Traveling
Software's LapLink to move stored data to a desk top PC.
Foreshadowing PCMCIA, the UltraLite had a socket that accepted credit-card-
size ROM cards holding popular applications like WordPerfect or Lotus 1-2-
3, or a battery-backed 256-KB RAM card.
Sun SparcStation 1
It wasn't the first RISK workstation, nor even the first Sun system to use
Sun's new SPARC chip. But the SparcStation 1 set a new standard for
price/performance, churning out 12.5 MIPS at a starting price of only $8995
- about what you might spend for a fully configured Macintosh. Sun sold
lots of systems and made the words SparcStation and workstation synonymous
in many peoples minds.
The SparcStation 1 also introduced S-Bus, Sun's proprietary 32-bit
synchronous bus, which ran at the same 20-MHz speed as the CPU.
IBM RS/6000
Sometimes, when IBM decides to do something, it does it right.(Other
times... Well, remember the PC jr.?)The RS/6000 allowed IBM to enter the
workstation market. The RS/6000`s RISK processor chip set (RIOS) racked up
speed records and introduced many to term suprscalar. But its price was
more than competitive. IBM pushed third-party software support, and as a
result, many desktop publishing, CAD, and scientific applications ported to
the RS/6000, running under AIX, IBM's UNIX.
A shrunken version of the multichip RS/6000 architecture serves as the
basis for the single-chip PowerPC, the non-x86-compatible processor with
the best chance of competing with Intel.
Apple Power Macintosh
Not many companies have made the transition from CISC to RISK this well.