Автоматический контроль подготовки и нагрева шихты ЦАМ

29±2

не>2

11±2

14±2

по разности

Зб±2

не>2

24±2

по разности

37±2


Тонина помола пыли после шаровой мельницы (фракция -0,08 мм) должна выдерживаться в пределах 58-64 % для всех видов массы.

По фактической чистоте рассева крупки 1 (фракция -8+4 мм), крупки 2 (фракция -4+2 мм) и тонине помола пыли дозировка компонентов по дозато­рам должна устанавливаться цеховым регламентом, обеспечивающим заданный грансостав шихты.


2.1 Подбор устройств преобразования и передачи сигналов от

технологического процесса


Средства измерения температуры контактным способом включают в себя измерительные преобразователи, к которым подводится среда, температура ко­торой измеряется. Наиболее распространенными средствами измерений явля­ются термоэлектрические преобразователи и термопреобразователи сопротив­ления.

Действие термоэлектрического преобразователя основано на использовании зависимости термоэлектродвижущей силы термопары термометрического чув­ствительного элемента) от температуры. Термоэлектрические преобразователи позволяют измерять температуру от -200 до 2000°С. Они изготавливаются следующих типов:

ТВР - термопреобразователь вольфрам-рениевый;

ТПР - термопреобразователь платинородиевый;

ТПП – термопреобразователь платинородиевый-платиновый;

ТХА (ТХК) - термопреобразователь хромель-копелевый.

Исходя из стоимости данных классов преобразователей оптимальным вы­бором будет преобразователи типа ТХА или ТХК, которые обеспечивают измеряемый диапазон температур (0..200°С), так и точность измерения +/-2°С.

Ввиду того, что термопары будут установлены в диски с температурой до 200°С, а длина провода термопары - 2000 мм, температура окружающего воз­духа (рядом с подогревателем) достигает 55°С, для подключения вторичных измерительных приборов используем термоэлектродные (компенсационные провода). Известно, что термо-ЭДС, развиваемая термоэлектрическим (термо­парой), зависит от температуры свободных концов. Поэтому для правильной оценки температуры по шкале  измерительного прибора свободные концы пре­образователя «переносят» с помощью термоэлектродных проводов в место с более постоянной температурой, чтобы в дальнейшем автоматически или вручную вводить поправку на температуру свободных концов. Согласно дейст­вующему ГОСТу 24335-80 «Провода термоэлектродные. Технические условия» термопреобразователи с градуировкой XK(L) подключаются к преобразовате­лям термо-ЭДС в токовый сигнал посредством компенсационных проводов ПТВЭ (хромель-копель).

Теоретическое введение

Электромагнитный расходомер "Взлет ЭР" предназначен для измерения расхода электропроводных жидкостей в широком диапазоне температуры и вязкости. Прибор позволяет измерять расход и объем питьевой, отопительной или сточной воды, жидких пищевых продуктов, растворов кислот, щелочей, и других жидкостей. Расходомер "Взлет ЭР" включен в Государственный реестр средств измерений за № 20293-00 и имеет гигиеническое заключение Минздрава РФ №78.1.6.421.Т.8872.11.00. По заказу расходомер оснащаются кнопкой обнуления значения накопленного счетчиком объема, обеспечивая, таким образом, режим ручного дозирования. Расходомеры оснащены интерфейсом RS232, который может использоваться для связи с IBM-совместимым компьютером. По заказу приборы оснащают токовым выходом (4…20 или 0…5 мА). Покрытие внутреннего канала расходомера, контактирующего с жидкостью выполняют из фторопласта (при измерении теплофикационной воды, пищевых продуктов, агрессивных жидкостей и т.д.) или полиуретана (при измерении абразивных жидкостей и пульп), электроды - из нержавеющей стали, тантала, титана.


Основные технические и метрологические характеристики ЭРСВ-410

Наименование параметра                                    Значение параметра

Диаметр условного прохода Dy, мм                            10; 20; 32; 40; 50; 65;

                                                                                       80; 100; 150; 200

Измеряемый массовый расход, т/ч

- наименьший, Qv наим                                           0,028 – 11,32

- переходной, Qv п1                                                        0,13 – 52,7

- наибольший, Qv наиб                                                                                         3,4 - 1358

Наибольшая температура измеряемой жидкости, °С  150

Минимальные длины прямолинейных участков                   3Dy и 2Dy

Максимальное давление в трубопроводе, МПа            2,5

Питание расходомера

Средний срок службы                                         12 лет

Межповерочный интервал - 4 года.

 

Описание стенда

Лаботрный стенд включает в себя:

·        Бак с водой;

·        Насос “Кама”;

·        Напорная ёмкость;

·        Исполнительный механизм (ИМ): электродвигатель 27 В пост. ток;

·        Регулирующий орган: шаровый кран Дy=25 mm;

·        Электромиагнитный преобразователь расхода ВЗЛЕТ 410 ЭР;

·        Измерительная ёмкость с датчиками уровня и электомагнитным клапаном;

·        Секундомер;

·        Блок управления (ключи и кнопки управления + уровнемер);


Рис. 2 Функциональная схема стенда


Вода из бака (1) подается в напорную емкость (3), при помощи насоса (2). Напорная емкость служит для стабилизации давления в системе, путем поддержания постоянного столба воды.Вода из напорной емкости через регулирующий клапан (4) и преобразователь расхода Метран 300ПР (5) самотеком поступает в измерительную емкость (6). Регулирующий орган и исполнительный механизм (4) служат для изменения расхода. Процент открытия РО можно задать при помощи кнопок “больше”, “меньше”. При нажатии кнопки “пуск” закрывается клапан и измерительная емкость заполняется водой. По мере заполнения емкости срабатывают датчики уровня и реализуется следующий алгоритм:

·                    при нижнем уровне - включается секундомер;

·                    при вехнем уровне – останавливается секундомер, автоматически открывается клапан для сброса воды. После сброса изменяется расход (процент открытия РО) при помощи кнопок “больше”, “меньше” - система готова к новому циклу.

Принцип действия Преобразователя расхода Метран-300ПР

Метран-300 ПР - вихреакустический преобразователь объемного расхода с ультразвуковым детектированием вихрей, предназначен для технологического и коммерческого учета расхода и объема воды и водных растворов в составе теплосчетчиков или счетчиков-расходомеров в заполненных трубопроводах систем водо- и теплоснабжения.

Принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкости при обтекании ею призмы, расположенной поперек потока.

Преобразователь состоит из проточной части и электронного блока (рис. 1). В корпусе проточной части расположены тело обтекания - призма трапецеидальной формы (1), пьезоизлучатели ПИ1, ПИ2 (2), пьезоприемники ПП1, ПП2 (3) и термодатчик (7).

Электронный блок включает в себя генератор (4), фазовый детектор (5), микропроцессорный адаптивный фильтр с блоком формирования выходных сигналов (6), собранные на двух печатных платах: приемника и цифровой обработки.



На плате цифровой обработки расположены два светодиода - зеленый и красный, выполняющие функцию индикаторов состояния преобразователя. Зеленый светодиод сигнализирует о нормальной работе преобразователя,  а красный загорается при расходе меньшем, чем Q min, либо хаотичном характере процесса вихреобразования.

Тело обтекания расположено на входе жидкости в проточную часть. При обтекании этого тела потоком жидкости за ним образуется вихревая дорожка, частота следования вихрей в которой с высокой точностью пропорциональна расходу.

За телом обтекания в корпусе проточной части расположены диаметрально противоположно друг другу две пары стаканчиков, в которых собраны ультразвуковые пьезоизлучатели ПИ1, ПИ2 и пьезоприемники ПП1, ПП2. На ПИ1, ПИ2 от генератора подается переменное напряжение, которое преобразуется в ультразвуковые колебания. Пройдя через поток, эти колебания в результате взаимодействия с вихрями оказываются модулированными по фазе. На ПП1, ПП2 ультразвуковые колебания преобразуются в электрические и подаются на фазовый детектор.

Две пары пьезоэлементов "излучатель-приемник" обеспечивают компенсацию влияния паразитных факторов (вибрация трубопровода, пульсация давления), возникающих в проточной части.

Для увеличения динамического диапазона преобразователя за счет измерения малых расходов, где характеристика преобразователя нелинейная и зависит от температуры теплоносителя, в проточную часть установлен термодатчик. Сигнал от него автоматически вводится в программу вычисления расхода в области малых его значений.

На фазовом детекторе определяется разность фаз между сигналами с приемников первой и второй пары. На выходе фазового детектора образуется напряжение, которое по частоте и амплитуде соответствует интенсивности и частоте следования вихрей, которая в силу пропорциональности скорости потока является мерой расхода.

Для фильтрации случайных составляющих сигнал с фазового детектора подается на микропроцессорный адаптивный фильтр и затем в блок формирования выходных сигналов. Для повышения достоверности показаний при обработке сигнала вычисляется дисперсия периода колебаний вихрей.

Таким образом, в результате преобразований и программной обработки модуль формирует импульсный выходной сигнал.

Проточная часть преобразователя расхода представляет собой полый цилиндр специальной конструкции, в котором установлены тело обтекания, термодатчик и вварены стаканчики с пъезоэлементами. Установка преобразователя на трубопроводе про из водится с помощью патрубков и фланцев. Геометрическая форма патрубков на входе и выходе про точной части обеспечивает сохранение метрологических характеристик и снижает требования к длине прямых участков трубопроводов до и после места установки преобразователя.

Для увеличения срока службы преобразователя его проточная часть изготовлена из нержавеющей стали.

Технические характеристики:

Выходной сигнал преобразователя:

-         токоимпульсный  (ТИ)

Параметры выходных сигналов:

-         ток нагрузки токоимпульсного выходного от 7 до 10 мА

-         сопротивление нагрузки токоимпульсного выходного сигнала от 0 до 1,8 кОм (при напряжении питания 36В), нагрузка должна быть связана с землей.

Питание: 18-36 В постоянного тока.

Таблица 1.

Основные технические параметры.

Наименование

преобразователя

 

Dy, мм

Пределы измерения


м3/ч


Q max

Q ном

Q min

Метран-300ПР-25

25

9

7,5

0,18


Основные достоинства преобразователя:

- межповерочный интервал - 3 года;

- высокая надежность, стабильность в течение длительного времени;

- отсутствие в проточной части подвижных элементов;

- надежная работа при наличии вибрации трубопровода, изменений температуры и давления рабочей среды;

- малые длины прямых участков трубопроводов в месте установки преобразователя;

-       самодиагностика.

Поверка преобразователя

Поверка производится проливным или имитационным методом, согласно методике, утвержденной госстандартом РФ, а также в соответствии с требованиями РД 50-660.

Для поверки преобразователя расхода Метран-300ПР имитационным методом применяют имитатор расхода "Метран-550ИР". "Метран-550ИР" предназначен для формирования и выдачи сигнала, имитирующего вихреобразование в проточной части преобразователя расхода при соответствующем значении расхода жидкости, а также для измерения периода выходных сигналов вихревых преобразователей расхода. Имитатор может применяться не только для поверки преобразователей, но и для их настройки и проверки работоспособности в процессе эксплуатации непосредственно на объекте без демонтажа с трубопровода.

Разработанная методика беспроливной и бездемонтажной поверки вихреакустических преобразователей расхода серии "Метран" с помощью имитатора "Метран-550ИР" утверждена в Госстандарте РФ.

Преобразователь расхода "Метран-300ПР" применяется как основной элемент счетчиков тепла. Но в ряде случаев на объектах промышленного и жилищно-коммунального хозяйства необходимо учитывать расход и объем энергоносителей и отображать эти значения. Поэтому был разработан и серийно выпускается счетчик-расходомер "Метран-З10Р". Его основу составляет преобразователь расхода "Метран-300ПР". Счетчик является составным изделием, включающим в себя первичные преобразователи расхода и температуры, а также вычислительное устройство (вычислитель расхода "Метран-310ВР"), что позволяет рассчитывать массовый расход и массу теплоносителя и, при необходимости, отдельно учитывать количество горячей воды с заданной температурой.

Проведение поверки проливным методом производится согласно методики поверки на преобразователь расхода Метран-300ПР и Метран-310ВР. Определение относительной погрешности расходомера производится по показаниям измеренных значений расходов полученных на трех поверочных расходах. Эталоном на данной поверочной установке является мерная емкость с калиброванным объемом  8 литров, эталоном времени секундомер, встроенный в стенд (или таймер контроллера).

При проведении поверки в ручном режиме работы стенда, вихреакустический расходомер Метран-300ПР работает в комплекте с вычислителем расхода Метран-310ВР. Показания мгновенного расхода, используемые для расчета погрешностей отображаются на ЖКИ Метран-310ВР.



Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать