Согласно В.В. Радкевичу, рождаемость в сравнении с 1985 г. сократилась на 25%. Рост заболеваний беременных женщин вызвал снижение числа нормальных родов с 54 до 34%. Заболевание раком щитовидной железы у детей увеличилось с 0,42 на 100 тыс. человек в 1986 г. до 2,24 в 1992 г., а в Гомельской области с 0,25 до 12 (почти в 50 раз).
Важно подчеркнуть, что чернобыльская катастрофа заставила по-новому взглянуть на так называемое экологическое напряжение. Даже в тех районах, в которых уровень загрязнения территории не вызывает непосредственной угрозы здоровью населения, все же имеет место более острое протекание обычных заболеваний. Это заставляет иначе оценить влияние малых доз облучения: они оказывают как прямое влияние, так и косвенное, через экологическое напряжение. В частности, у населения зараженных районов сильно развита радиофобия (чрезмерная боязнь радиационного облучения), что в определенной степени и есть проявление такого экологического напряжения.
Хранение и обезвреживание радиоактивных отходов. Радиоактивные отходы (РАО) классифицируются по различным признакам.
По агрегатному состоянию РАО делятся на жидкие, твердые и газообразные.
Все жидкие РАО по степени активности подразделяются на три класса:
1-й класс — слабоактивные отходы, удельная активность которых не превышает 3,7-107 Бк/м3; 2-й класс — отходы средней степени активности (удельная реактивность в пределах 3,7-107 — 3,7-1013Бк/м3); 3-й класс — высокорадиоактивные отходы, (удельная активность превышает 3,7-1013Бк/м3).
Типичными жидкими отходами 1-го класса являются сточные воды дезактивационных пунктов, санпропускников, прачечных и т.д. Высокоактивные РАО, содержащие преимущественно искусственные радионуклиды, образуются на конечных звеньях производственного цикла, а также в некоторых научных лабораториях. Особую опасность в экологическом аспекте (в связи с большим количеством) представляют отходы заводов, на которых перерабатываются облученные тепловыделяющие элементы (ТВЭЛы) АЭС с целью извлечения из них невыгоревшего ядерного топлива или выделения вновь образовавшегося плутония.
Твердые РАО также подразделяются на три группы: 1-я группа — удельная активность находится в пределах 7,4-104 — 3,7-106 Бк/кг, 2-я группа — удельная активность в пределах 3,7-106 — 3,7 10' Бк/кг; 3-я группа — удельная активность >3,7109 Бк/кг. К твердым РАО относятся:
1) негорючие отходы: металлы, стекло, керамика, строительный мусор и т.д.;
2) горючие отходы: дерево, пластмасса, резина, полихлорвиниловые изделия, текстиль и т.п.
Количество и объемы средне- и низкоактивных РАО чрезвычайно велики. Предполагается, что к 2000 г. в России их накопится около 1,5 млн м3, в США — около 3,6 млн м3.
Почти 98,5% ядерного топлива АЭС идет в отходы, представляющие собой радиоактивные продукты расщепления (плутоний, цезий, стронций и т.д.), которые нельзя уничтожить, а можно лишь вечно хранить на спецскладах. Если учесть, что загрузка только реактора мощностью 1000 МВт (это аналог злополучного 4-го реактора Чернобыльской АЭС) составляет около 180 т, чего хватает на 3 года, то за указанное время на территории АЭС с 4 реакторами скапливается до 700 т отработанного топлива. В случае аварии это может привести к глобальной экологической катастрофе.
Образующиеся в активной зоне ядерных реакторов тритий, углерод-14, криптон-15 и йод-129 практически полностью выделяются в биосферу. Так выброс трития атомной энергетикой СССР только за 1985 г. в 3,5 раза превзошел, по подсчетам специалистов, равновесное содержание его в атмосфере и более чем в 2 раза — содержание во всех реках континентов. Криптон-85, содержащийся в атмосфере, имеет в основном искусственное происхождение. Только за 1985 г. его «выработка» на всех АЭС (а, следовательно, и выброс) в 500 тыс. раз превзошел равновесное содержание в атмосфере криптона-85 естественного происхождения.
Еще более опасные последствия имеют место в случаях катастроф и аварий на атомных объектах и предприятиях.
Крупная авария произошла в 1957 г. в Челябинской области на радиохимическом заводе по переработке ядерного топлива и извлечения плутония для ядерных бомб. Этот завод с 1949 г. сбрасывал РАО в открытые водоемы, в частности, в озеро Карагай поступило 120 млн кюри (1Ки=3,71010Бк), что в два раза больше, чем в результате катастрофы в Чернобыле. В дальнейшем для жидких РАО были изготовлены бетонные емкости с покрытием из нержавеющей стали. Однако именно в них произошел взрыв с выбросом 2 млн кюри. Облако прошло на север, оставив радиоактивный след длиной 105 км и шириной до 8 км. Из зараженной зоны переселили 17 тыс. жителей. Ликвидация следа производится до сих пор.
В системе МО РФ очень острой стала проблема нейтрализации РАО, которые образуются в процессе эксплуатации и ремонта, а также вследствие вывода из боевого состава атомных подводных лодок (АПЛ) 1 и 2-го поколений. Уже сейчас на Северном флоте, например, скопилось около 90 АПЛ с выслужившими свой срок реакторами. Всего же в пяти ядерных флотах мира (США, Россия, Китай, Англия и Франция) в 1990—1995 гг. предполагалось списать 190 реакторов. При плановом сроке отстоя активных зон реакторов до 5—6 лет некоторые установки находятся в этом режиме от 7 до 14 лет. При этом специалисты отмечают, что ВМФ не хватает хранилищ для РАО, а имеющиеся находятся далеко не в лучшем состоянии.
Захоронение и обеззараживание РАО: общие принципы. Свалки РАО в морях, в том числе и российских, возникли вслед за появлением атомного флота у ряда стран. Сбросы РАО, начавшиеся уже в 1959 г., продолжались систематически вплоть до 1992 г. в некоторых районах Балтийского, Баренцева, Белого, Карского, Охотского и Японского морей, а также в прибрежных водах архипелага Новая Земля и полуострова Камчатка.
По сводным данным (В.В. Догуша, 1995 г.), в период с 1964 по 1991 г. в северных морях затоплено 4900 контейнеров с твердыми РАО низкой и средней степени активности. У восточных берегов России, в Японском и Охотском морях за 1986—1991 гг. было захоронено 6868 контейнеров со средне- и низкоакгивными твердыми РАО, а также 38 судов и более 100 крупногабаритных объектов. Их суммарная активность оценивается специалистами в 22,2 тыс. кюри. За 30 лет эксплуатации атомного флота в экосистемы северных морей поступило около 100 тыс. м3 жидких РАО с активностью более 24 тыс. кюри.
Работы по организации морского радиоэкологического мониторинга в указанных районах начаты спецподразделениями ВМФ России только в 1992 г. До этого времени эпизодические исследования радиационной обстановки проводились на акваториях в 50—100 км от мест захоронения РАО. Непосредственно в районах затопления контроль не проводился в течение более 20 лет. Специалисты отмечают, что в сложившейся ситуации невозможно определить действительное состояние защитных оболочек захороненных РАО и дать объективный прогноз относительно сроков, скорости и масштабов выхода радионуклидов в морскую среду.
Общее количество РАО, сброшенных в море США только в 1946— 1970 гг. составило более 86 тыс. контейнеров с суммарной радиоактивностью около 95 тыс. кюри. В 1971—1983 гг. РАО предприятий военной и мирной атомной промышленности регулярно сбрасывали в море Бельгия, Англия, Нидерланды и Швейцария, эпизодически — Франция, Италия, ФРГ, Швеция, Япония, Южная Корея. Подсчитано, что всего за 1967—1992 гг. в Атлантическом океане оказалось 94603 т РАО, размещенных в 188188 контейнерах, общей активностью более 1 млн кюри.
К настоящему времени выработаны (К.М. Сытник и др.) следующие технологии захоронения РАО: 1) для больших количеств высокоактивных РАО — концентрирование и последующее хранение (посредством остекловывания, бетонирования и складирования в глубоких шахтах); 2) для небольших количеств высокоактивных РАО — извлечение долгоживущих изотопов с высокой токсичностью (ядовитостью) перед удалением остаточной активности; 3) для отходов средней степени активности — хранение до достижения распада коротко-живущих изотопов и последующее рассеивание в той или иной среде; 4) для относительно небольших количеств слабоактивных отходов — разбавление (например, водой) и последующее рассеивание.
Ряд специалистов считает, что захоронение РАО в морских глубинах имеет ряд преимуществ и менее опасно, так как там существуют более благоприятные условия для быстрого рассеивания и нейтрализации радионуклидов и меньше возможностей для заражения водных организмов, служащих объектами морского промысла.
На Третьей международной конференции по мирному использованию атомной энергии (1976 г.) в качестве наиболее безопасных в эколого-гигиеническом отношении были признаны только два метода захоронения РАО в море:
1. Захоронение в изолированном виде (в капсулах).Технология состоит в переводе РАО в стекловидное состояние (путем заливания жидким стеклом), смешении с цементом или в заключении остеклованной массы в коррозионностойкие контейнеры, которые способны выдержать большое внешнее давление. После этого их сбрасывают на большие глубины.
2. Захоронение малоактивных РАО в предварительно разбавленном виде. Для того, чтобы радиоактивность отходов, попавших в морскую среду, быстро убывала, сброс их рекомендовано осуществлять во время движения судна и желательно под винт. Ныне законодательство России запрещает подобное захоронение.
Длительное хранение высокоактивных РАО. Хранение высокоактивных жидких отходов (обычно это водные азотнокислые растворы) осуществляется в баках из нержавеющей стали с двойным дном, объемом от нескольких десятков до нескольких сотен кубометров. Устанавливают их в бетонных камерах, а для того, чтобы предотвратить возможный взрыв скапливающегося водорода, резервуар непрерывно продувают воздухом. Отработанный воздух в дальнейшем очищают от радиоактивных аэрозолей в специальных фильтрах.
Содержимое некоторых баков постоянно перемешивают, так как выпадение твердых частиц, например плутония или урана, может привести к накоплению критической массы и, следовательно, инициировать ядерный взрыв. Выпадение же в осадок радиоактивных солей другой природы может способствовать резкому повышению температуры и также породить взрыв, но уже тепловой, с выходом радиоактивности в окружающую среду.
Современное хранилище высокорадиоактивных отходов состоит из вертикальных шахт, горизонтальных штреков (коридоров) и собственно помещений для захоронений, сооружаемых, например, в соляных породах на глубине порядка 600 м. В полу помещения бурятся шурфы для хранения канистр с растворами отходов высокой удельной активности (ОВУА). Между шурфами необходимо выдерживать расстояние от 10 до 50 м. Причиной такого разнесения канистр друг от друга является их сильное тепловыделение; нарушение режима последнего может привести к катастрофе.