Ø выбивка отливок из форм и стержней из отливок.
Ø Отделение литниковой системы от отливок, их очистка и зачистка.
Ø Контроль качества отливок.
v Возможные дефекты отливок, причины и меры по их устранению.
Ø Недоливы и спаи. Образуются от не слившихся потоков металла, затвердевающих до заполнения формы. Возможные причины: холодный металл, питатели малого сечения.
Ø Усадочные раковины – закрытые внутренние полости в отливках с рваной поверхностью. Возникают вследствие усадки сплавов, недостаточного питания. Устраняют с помощью прибылей.
Ø Горячие трещины в отливках возникают в процессе кристаллизации и усадки металла при переходе из жидкого состояния в твердое при температуре, близкой к температуре солидуса. Склонность сплава к образованию горячих трещин увеличивается при наличии неметаллических включений, газов, серы и других примесей. Образование горячих трещин вызывают резкие перепады толщин стенок, острые углы, выступающие части. Высокая температура заливки также повышает вероятность образования горячих трещин.
Ø Для предупреждения образования горячих трещин в отливках необходимо обеспечивать одновременное охлаждение толстых и тонких частей отливок; увеличивать податливость литейных форм; по возможности снижать температуру заливки сплава.
Ø Пригар – трудноудаляемый слой формовочной или стержневой смеси, приварившийся к отливке. Возникает при недостаточной огнеупорности смеси или слишком большой температуре металла.
Ø Песчаные раковины – полости в теле отливки, заполненные формовочной смесью. Возникают при недостаточной прочности формовочной смеси.
Ø Газовые раковины – полости отливки округлой формы с гладкой окисленной поверхностью. Возникают при высокой влажности и низкой газопроницаемости формы.
Ø Перекос. Возникает из-за неправильной центровки.
v Область применения.
Ø Применяют во всех областях машиностроения. Получают отливки любой конфигурации 1…6 групп сложности. Точность размеров соответствует 6…14 группам. Параметр шероховатости Rz=630…80мкм.
Ø Можно изготавливать отливки массой до 250т. с толщиной стенки свыше 3мм.
v Преимущества.
Ø Конфигурация 1…6 групп сложности.
Ø Возможность механизировать производство.
Ø Дешевизна изготовления отливок.
Ø Возможность изготовления отливок большой массы.
Ø Отливки изготовляют из всех литейных сплавов, кроме тугоплавких.
v Недостатки.
Ø Плохие санитарные условия.
Ø большая шероховатость поверхности.
Ø Толщина стенок > 3мм.
Ø Вероятность дефектов больше, чем при др. способах литья.
Литье в кокиль
v Сущность процесса заключается в изготовлении отливок из жидкого расплава, свободной его заливкой в многократно используемые металлические формы – кокили, обеспечивающие высокую скорость затвердевания жидкого расплава и позволяющие получать в одной форме от нескольких десяток до нескольких тысяч отливок.
v Виды.
Ø Вытряхные(не разъемные) – отливки простой конфигурации.
Ø С вертикальным разъемом – отливки не сложной конфигурации с небольшими выступами и впадинами на наружной поверхности.
Ø С горизонтальным разъемом – изготовление крупных простых по конфигурации отливок.
v Материалы и оснастка.
Ø Форма отливки – кокиль.
Ø Расплавленный металл.
Ø Теплоизоляционное покрытие.
v Последовательность изготовления отливок.
Ø Подготовка кокиля к работе: очистка от остатков теплоизоляционного покрытия, нагрев до температуры 150-200° и нанесение свежего слоя теплоизоляционного покрытия толщиной 0,1…0,5мм, а на литниковые каналы и прибыли до 1мм.
Ø Сборка кокиля: установка стержней, соединение частей кокиля.
Ø Заливка расплавленного металла в кокиль.
Ø Затвердевание и охлаждение отливки.
Ø Удаление из отливки металлических стержней (если они есть) после образования в ней достаточно прочной корки.
Ø Извлечение отливки из кокиля после ее охлаждения до температуры 0,6…0,8 от температуры солидуса.
Ø Охлаждение или подогрев кокиля до оптимальной температуры 200-300°С и подкраска(при необходимости) рабочей поверхности кокиля.
v Область применения. Литьем в кокиль изготавливают отливки из чугуна, стали и цв. сплавов. Трудно получить сложные стальные отливки ввиду значительной усадки литейных сталей, что ведет к образованию трещин(в отсутствии податливости формы). Целесообразно применять в серийном, крупносерийном и массовом производствах. Этим способом изготавливают отливки из стали массой до 160кг., из цв. сплавов – до 50кг. с толщиной стенок от 3 до 100мм. Точность размеров соответствует 4…12 классам. Можно изготавливать отливки 1…5 группы сложности. Параметр шероховатости поверхности Rz = 80…20мкм.
v Преимущества.
Ø Повышенная точность геометрических размеров (по сравнению с литьем в ПФ).
Ø Снижение шероховатости поверхностей отливок (по сравнению с литьем в ПФ).
Ø Снижение припусков на механическую обработку на 10-20%.
Ø Лучше санитарно-гигиенические условия.
Ø Мелкозернистая структура отливок( > прочность).
v Недостатки.
Ø Сложность изготовления кокилей, их ограниченный срок службы (особенно при литье черных сплавов).
Ø Неподатливость кокиля и металлических стержней.
Ø Затруднен вывод газов из полости формы.
Ø Высокая стоимость кокиля, сложность и трудоемкость его изготовления
Ø Ограниченная стойкость кокиля, измеряемая числом годных отливок, которые можно получить в данном кокиле. От стойкости кокиля зависит экономическая эффективность процесса.
Ø Сложность получения отливок с поднутрениями, для выполнения которых необходимо усложнять конструкцию формы - делать дополнительные разъемы, использовать вставки, разъемные металлические или песчаные стержни.
Ø Неподатливый кокиль приводит к появлению в отливках напряжений, а иногда к трещинам.
Литье в оболочковые формы
v Сущность процесса заключается в применении тонкостенных разъемных разовые формы, изготовленных из формовочной смеси. Формовочные смеси изготавливают из мелкозернистого кварцевого песка, перемешанного с термореактивной смолой. Модельную плиту нагревают до температуры 200-250 градусов. На ее поверхность наносят разделительную смазку. Формовочную смесь наносят на на модельную плиту и выдерживают 10-30 секунд; от теплоты модельной плиты термореактивная смола переходит в жидкое состояние, склеивая песчинки с образованием песчано-смоляной оболочковой формы (толщиной 5-10 мм) в зависимости от времени выдержки. При этом смола твердеет. Готовые оболочковые формы снимают с металлической модели и, если они разъемные, то их склеивают. В собранные оболочковые формы заливают металл. Литьем в оболочковые формы получают ребристые цилиндры, коленчатые валы и т.д. Способ применяют для стальных, и для алюминиевых отливок, простой конфигурации без внутренних полостей в серийном производстве. Формовочная смесь состоит из мелкозернистого песка (размер зерна 0,25...0,06мм) и термореактивной смолы - пульвербакелита. Способ обеспечивает получение шероховатости поверхности Rz =80...40 мкм, и точность - 12...14 квалитет. Способ легко можно механизировать и автоматизировать.
v Преимущества способа.
Ø Расход формовочной смеси в 8-10 раз меньше, чем при литье в песчаные формы.
Ø Припуски составляют 0.5-1.5 мм.
v Виды.
Ø Бункерный.
Ø Прессования через резиновую диафрагму.
Ø Пескодувный.
v Технология изготовления оболочковой формы начинается с нанесения пульверизатором на металлическую модельную плиту разделительного состава, облегчающего снятие оболочки. Затем модельную плиту нагревают в электрической печи до температуры 200...220 °С, устанавливают над бункером и закрепляют моделью вниз. Бункер переворачивают на 180°, и формовочная смесь падает на нагретую модельную
Схема изготовления оболочковых форм:
Модельная плита с оболочковой полуформой и собранная форма:
плиту при выдержке в течение 20...30 с смола плавится и, обволакивая тонкой пленкой мелкие зерна песка, образует оболочку толщиной б...8 мм. Бункер возвращают в исходное положение, и непрореагировавшая формовочная смесь падает на его дно. Снятую с бункера модельную плиту с непрочной оболочкой отправляют в электрическую печь с температурой около 350 °С. Здесь смола в течение 90...180 с полимеризуется и необратимо твердеет, образуя прочную оболочковую полуформу. По такой же технологии изготавливают другую полуформу.