В процессе деароматизации наиболее эффективными являются катализаторы, в состав которых входят промотирующие компоненты для усиления крекирующей активности, а также оксиды гидрирующих металлов в повышенных концентрациях.
Катализаторы деароматизации дизельного топлива были испытаны в лабораторных и полупромышленных условиях. Испытания проводили с использованием в качестве сырья прямогонное дизельное топливо с содержанием 1,7% масс. серы и 36% масс. ароматических углеводородов. Результаты испытаний представлены в таблице 7 [11].
Таблица 7 – Результаты исследования каталитических систем деароматизации
Каталитическая система |
Режим деароматизации |
Глубина деароматизации, % |
||
давление, МПа |
температура |
объёмная скорость подачи сырья, ч-1 |
||
NiMo |
8-12 |
умеренная |
0,5-1,5 |
30-50 |
NiMo+NiW |
8-12 |
умеренная |
1-2 |
30-50 |
NiW +NiW |
4-6 |
умеренная |
0,25-0,5 |
30-50 |
NiW+Pt/Al2O3 |
4-6 |
низкая |
0,1 |
65-80 |
NiMo+ССК |
4-6 |
умеренная |
0,5-1,5 |
65-80 |
Как видно, с практической точки зрения наиболее приемлема каталитическая система NiW+Pt/Al2O3. При умеренном давлении и низкой температуре она обеспечивает высокую степень деароматизации. Недостаток этой системы – очень высокая чувствительность к присутствию серы в сырье. Её содержание не должно превышать 1-3 ppm. Кроме того, для достижения необходимой конверсии ароматических углеводородов объёмная скорость подачи сырья должна быть менее 0,1 ч-1, что на практике трудно осуществимо. Фирмой Haldor Topsoe был разработан серостойкий катализатор (ССК) на основе благородного металла способный работать на сырье, содержащем до 500 ppm. серы. Он обеспечивает высокую конверсию ароматических соединений при умеренном давлении и объёмной скорости [11].
На базе катализаторной системы ССК разработаны два катализатора деароматизации: ТК-907 на аморфном носителе, и ТК-908 на цеолите. Первый рекомендуется применять при содержании серы в сырье менее 10ppm., второй – до 500ppm. Эти катализаторы были испытаны на пилотной установке в течение 1300 и 5500 ч соответственно. Процесс протекал при умеренной температуре и давлении около 4,6 МПа на катализаторе ТК-907 и около 5 МПа на катализаторе ТК-908. Дезактивации катализаторов за время испытаний не наблюдалось. Содержание ароматических углеводородов в обоих случаях не превышало 5% при содержании их в сырье 20-22% [12].
2. МЕТОДИЧЕСКАЯ ЧАСТЬ
С 1.01.05г в странах ЕС действуют нормы по выбросам вредных веществ для автомобильной техники Евро 4, регламентирующие содержание серы в дизельном топливе не более 50 ррm. К 2010 году планируется весь дизельный транспорт перевести на топливо с ультранизким содержанием серы 10 ррm.
Снижение содержания серы в дизельном топливе может быть достигнуто путем гидроочистки, проводимой в более жестких условиях. Указанная цель также может быть достигнута подбором нового, более эффективного для данного типа сырья, катализатора [13].
Большинство реакторов гидропереработки нефтяного сырья, находящихся в настоящее время в эксплуатации, спроектированы и построены в середине 70-х годов. Поскольку выходы продуктов и их качество изменились, многие нефтепереработчики смогли получить преимущества от использования прогресса в разработке катализаторов и избежать крупных капиталовложений в свои установки. Однако для того, чтобы полностью реализовать потенциал реакторной системы экономически эффективно, необходима подробная оценка рабочих характеристик и конструкции существующих реакторных систем в сочетании с тщательным рассмотрением имеющихся в наличии вариантов модернизации реакторов.
По совершенствованию качества дизельных топлив большие усилия прилагают европейские страны. В них принята концепция ужесточения требований к этому виду топлива, особенно по содержанию в нём сернистых соединений. В настоящее время ограниченное число нефтеперерабатывающих заводов в мире может получать дизельное топливо с ультранизким содержанием сернистых соединений. Кроме этого в этих топливах предусматривается уменьшение присутствия ароматических углеводородов, 98%-й точки выкипания фракции и повышении цетанового числа (в настоящее время 52 пункта, а в перспективе до 55-58 пунктов).
C 2000 года в Европе действуют нормы Евро-3, устанавливающие требования по цетановому числу "не менее 51", по сере "не более 0,035 массовых %", плотности "не более 0,845 г/см3" при нормировании содержания полиароматических соединений "не более 11% объёма".
В рамках программы “Auto Oil II” Европейский Союз (ЕС) постановил, что с 2005 г. содержание серы в ДТ не должно превышать 0,005 %, цетановое число - не менее 54 ед.. К 2011 г. ДТ для ЕС будут иметь следующие показатели: цетановое число - не менее 53 - 58 ед., содержание серы – не более 0,001%, содержание ПАУ – не более 2 %, температура выкипания 95 % - не выше 340 оС.[14]
Таблица 8 - Требования национальных и международных стандартов по отдельным показателям автомобильного дизельного топлива
Показатель |
ГОСТ 305-82 |
EN 590-99 |
Всемирная топливная хартия – 2002 |
||||
EN 590-2004 |
Катего-рия 1 (для ЕВРО-0) |
Катего-рия 2 (для ЕВРО-1,2) |
Катего-рия 3 (для ЕВРО-3,4) |
Катего- рия 4 (только ЕВРО-4) |
|||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
Цетановое число, не менее |
45,0 |
51,0 |
51,0 |
48,0 |
53,0 |
55,0 |
55,0 |
Цетановый индекс, не менее |
не норми-руется |
46 |
46 |
45 |
50 |
52 |
52 |
Содержание серы, мг/кг, не более |
2000 (1вид) 5000 (2 вид) |
350 |
50 (1вид) 10 (2вид) |
3000 |
300 |
30 |
не должно выяв- ляться (5–10) |
Массовая доля полициклических ароматических углеводородов, %, не более |
не нор-мируется |
11,0 |
11,0 |
не нор-мируется |
5,0 |
2,0 |
2,0 |
Температура вспышки, о С, не менее |
35–40 |
55 |
55 |
55 |
55 |
55 |
55 |
По отношению к действующему европейскому стандарту EN 590, в Республике Беларусь был разработан и введен в действие с 1.02.2007 стандарт СТБ 1658-2006, который устанавливает технические требования и методы испытания дизельного топлива, используемого для транспортных средств (таблица 9)[14]
Таблица 9 - Общие требования и методы испытаний
Наименование показателя |
Единица измерения |
Значение показателя |
Метод испытания |
|
min |
max |
|||
1 Цетановое число |
- |
51,0 |
- |
СТБ ИСО 5165 |
2 Цетановый индекс |
- |
46,0 |
- |
СТБ ИСО 4264 |
3 Плотность при 15 °СС' |
кг/м3 |
820 |
845 |
СТБ ИСО 3675 ЕН ИСО 12185 |
4 Массовая доля полициклических ароматических углеводородов |
%(m/m) |
|
11 |
СТБ ЕН 12916 |
|
мг/кг |
|
350* |
СТБ ИСО 20846 ЕН ИСО 20847 ЕН ИСО 20884 |
5 Содержание серы |
|
|
50* |
|
|
|
|
10* |
СТБ ИСО 20846 ЕН ИСО 20884 |
6 Температура вспышки |
°С |
Выше 55 |
- |
СТБ ИСО 2719 |
7 Коксуемость 10 %-ного остатка |
% (m/m) |
- |
0,30 |
СТБ ИСО 10370 |
8 Зольность |
% (m/m) |
- |
0,01 |
СТБ ИСО 6245 |
9 Содержание воды |
мг/кг |
- |
200 |
СТБ ИСО 12937 |
10 Содержание механических примесей |
мг/кг |
- |
24 |
СТБ ЕН 12662 |
11 Коррозия медной пластинки (3 ч при 50 °С) |
Единицы по шкале |
Класс 1 |
СТБ ИСО 2160 |
|
12 Стойкость к окислению |
г/м3 |
- |
25 |
СТБ ИСО 12205 |
13 Смазывающая способность: - скорректированный диаметр пятна износа (WSD 1,4) при 60°С |
мкм |
- |
460 |
СТБ ИСО 12156-1 |
14 Вязкость при 40 °С |
мм2/с |
2,00 |
4,50 |
СТБ ИСО 3104 |
15 Фракционный состав: % (V/V) перегоняется при250°С %(V/V) перегоняетсяпри350°С 95 % (V/V) перегоняется при температуре |
% (V/V) % (V/V) °С °с |
85 |
<65 360 |
СТБ ИСО 3405 |
16 Объемная доля метиловых эфиров жирных кислот (FАМЕ) |
% (V/V) |
- |
5 |
ЕН 14078 |
Доведение качества отечественных ДТ до требований ЕН 590 возможно только при комплексном внедрении на нефтеперерабатывающих заводах современных дорогостоящих технологий гидроочистки (гидрокрекинг и др.) и использовании противоизносных, цетаноповышающих, депрессорно-диспергирующих, антидымных, антиокислительных, моющих и других присадок.
За рубежом для характеристики воспламеняемости топлива наряду с цетановым числом используют дизельный индекс. Этот показатель нормируется и в отечественной технической документации на дизельное топливо, поставляемое на экспорт: ТУ 38.401-58-110-94.
Дизельный индекс (ДИ) вычисляют по формуле :
ДИ =tан d/100,
где tан – анилиновая точка (определяют в °С и пересчитывают в ,°F)
10F = (9,5°С + 32), d – плотность, градусы АПИ.
Между дизельным индексом и цетановым числом топлива существует зависимость :
Дизельный индекс |
20 |
30 |
40 |
50 |
62 |
70 |
80 |
Цетановое число |
30 |
35 |
40 |
45 |
55 |
60 |
80 |
В отечественной НТД нормируется дизельный индекс.
Дизельный индекс определяют по формуле :
ДИ= (108А+32)(141,5-131,5)/100,
где А- анилиновая точка испытуемого топлива, °С;
- относительная плотность топлива.
В настоящее время разработаны и применяются различные методы качественного и количественного анализа серосодержащих соединений в нефти и нефтепродуктах. Качественные методы анализа необходимы прежде всего для обнаружения таких активных соединений, как сероводород, тиолы и свободная сера. Из качественных методов определения активных серосодержащих соединений в лабораторной практике наибольшее применение нашли проба на медную пластинку и так называемая докторская проба.
Анализ на докторскую пробу заключается в том, что нефтепродукт интенсивно перемешивают с раствором плюмбита натрия и порошковой серой. При этом если анализируемый нефтепродукт содержит сероводород, выпадает чёрный кристаллический осадок сульфида свинца:
Na2PbO2 + H2 S = PbS + 2NaOH.
Докторская проба очень чувствительна и позволяет обнаруживать сероводород при его содержании 0,0006%.
Тиолы взаимодействуют с плюмбатом натрия по реакции :
Na2PbO2+ 2RSH = (RS)2Pb + 2NaOH,
при этом анализируемый нефтепродукт окрашивается в оранжевый, коричневый или чёрный цвет.
Для обнаружения сероводорода и свободной серы применяют пробу на медную пластинку, принятую в качестве стандартной (ГОСТ 6321-69). В результате сернистой коррозии медная пластинка, выдержанная в нефтепродукте, при повышенной температуре в течении определённого времени окрашивается в различные цвета от бледно-серого до почти чёрного.
К инструментальным методам определения группового и структурного состава серосодержащих соединений относятся газожидкостная и жидкость-жидкостная хромотография, полярография, потенциометрическое и амперометрическое титрование, УФ-,ИК- и ЯМР-спектроскопия, масс-спектроскопия.
Полярографическим методом анализа можно определять в нефтепродуктах содержание свободной, сероводородной, тиольной, сульфидной и дисульфидной серы.
Сероводородную и тиольную серу в моторных топливах определяют согласно ГОСТ 17323-71 методом потенциометрического титрования нитратом диамминсеребра. По характеру кривых титрования можно качественно оценить наличие в топливе свободной серы
Методы анализа общей серы делят на два класса: химические и физические. Из физических методов анализа следует отметить нейтронно-активационный (НАА), рентгено-флюоресцентный (РФА) и рентгено-радиометрический (РРМ). НАА основан на взаимодействии нейтронов с ядрами облучаемой пробы. Предел обнаружения серы равен 5∙10-2%. В основе РРМ лежит измерение поглощения рентгеновских лучей при известной зависимости степени поглощения от концентрации анализируемого вещества. РРМ можно использовать для анализа нефтепродуктов с массовой долей серы не менее 0,5%
Метод РФА – флюоресцентный вариант рентгено-радиометрического анализа. Предел обнаружения серы составляет 5∙10-3%.
Из химических методов анализа общей серы наиболее распространены и стандартизированы окислительные методы. В окислительных методах навеску нефтепродукта сжигают в приборах различной конструкции. В качестве окислителя используются воздух, кислород, диоксид марганца. В основе методов сжигания лежит реакция окисления всех серосодержащих соединений анализируемого нефтепродукта в оксиды серы (SO2,SO3) с последующим их поглащением и анализом [15].
Фракционным составом обычно называют зависимость количества выкипающего продукта от повышения температуры кипения.
Накопленный большой эксперементальный материал по определению фракционного состава одних и тех же нефтепродуктом разными методами позволил найти общие закономерности их взаимосвязи и предложить методы расчётного определения наиболее трудоёмких в эксперименте составов по ИТК и ОИ на базе наиболее доступного состава, определяемого простой перегонкой из колбы по ГОСТ 2177-81 [16]. Это метод Эдмистера, а так же, не потерявший своего значения и использующийся до сих пор, метод Обрядчикова и Смидович – метод построения ОИ по на основе кривой фракционного состава по ИТК.
Опорными параметрами в этом случае служат температуры выкипания 50% (масс.) по ИТК и уклон этой кривой между точками 10 и 70% (масс.). По этим значениям выполняют построения и находят значения отгона по кривой ИТК, соответствующие температурам начала и конца ОИ.
ЛИТЕРАТУРА
1. Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем,2002. 672с
2. Смидович Е.В. Технология переработки нефти и газа. Ч. 2-я. Крекинг нефтяного сырья и переработка углеводородных газов. – 3-е изд., перераб. и доп. – М.: Химия, 1980 г.
3. Аспель Н.Б., Дёмкина Г.Г. Гидроочистка моторных топлив – М.: Химия, 1977 г.
4. Каминский Э.Ф., Хавкин В.А., Курганов В.М. Деароматизация прямогонных дизельных дистиллятов при умеренном давлении водорода. Химия и технология топлив и масел, 1996.- №6.- с. 13- 14.
5. Магарил Р.З. Теоретические основы химических процессов переработки нефти: Учебное пособие для вузов. – Л.: Химия, 1985
6. Орочко Д.И. Гидрогенизационные процессы в нефтепереработке. М.: Химия, 1971.
7. Справочник современных нефтехимических процессов. Нефтегазовые технологии №3, 2001 г.
8. Материалы 4-ой конференции по технологиям нефтепереработки России и стран СНГ. Москва, сентябрь 2004
9. СТБ 1658-2006.Топливо для двигателей внутреннего сгорания. Топливо дизельное. Технические требования и методы испытаний. Минск: Госстандарт,2006
10. И.Н.Дияров и др. «Химия нефти» руководство к лабораторным занятиям,Ленинград «Химия» 1990г.
11. А.К.Мановян «Технология первичной переработки нефти и природного газа».Москва «Химия»,2001г.
12. Первая Российская конференция по технологиям нефтепереработки./ Документация конференции, 25-27 сентября 2001 г. Москва
13. Технология переработки нефти и газа. Процессы глубокой переработки нефти и нефтяных фракций: учеб.- метод. комплекс.Ч.1.Курс лекций/ сост. и общ. ред. С.М. Ткачева.- Новополоцк : ПГУ,2006. -392 с.
14. Соответствие показателей качества топлива действующим стандартам В.В. Чикулаева, Р.Р. Садыков, Р.Н. Никишин. Интернет-ресурс:
15. И.Н.Дияров и др. «Химия нефти» руководство к лабораторным занятиям,Ленинград «Химия» 1990г.
16. А.К.Мановян «Технология первичной переработки нефти и природного газа».Москва «Химия»,2001г.