Информационная безопасность в сетях Wi-Fi

Рис. 5. Фрейм, зашифрованный по алгоритму WEP

Вектор инициализации должен изменяться пофреймово во избежание IV-коллизий. Коллизии такого рода происходят, когда используются один и тот же вектор инициали­зации и один и тот же WEP-ключ, в результате чего для шифрования фрейма использу­ется один и тот же ключевой поток. Такая коллизия предоставляет злоумышленникам большие возможности по разгадыванию данных открытого текста путем сопоставления подобных элементов. При использовании вектора инициализации важно предотвратить подобный сценарий, поэтому вектор инициализации часто меняют. Большинство про­изводителей предлагают пофреимовые векторы инициализации в своих устройствах для беспроводных LAN.

Спецификация стандарта 802.11 требует, чтобы одинаковые WEP-ключи были сконфигурированы как на клиентах, так и на устройствах, образующих инфраструк­туру сети. Можно определять до четырех ключей на одно устройство, но одновре­менно для шифрования отправляемых фреймов используется только один из них.

WEP-шифрование используется только по отношению к фреймам данных и во время процедуры аутентификации с совместно используемым ключом. По алгоритму WEP шифруются следующие поля фрейма данных стандарта 802.11.

  • Данные или полезная нагрузка (payload).
  • Контрольный признак целостности (integrity check value, ICV).

Значения всех остальных полей передаются без шифрования. Вектор инициализа­ции должен быть послан незашифрованным внутри фрейма, чтобы приемная станция могла получить его и использовать для корректной расшифровки полезной нагрузки и ICV. На рис. 6 схематично представлен процесс шифрования, передачи, приема и расшифровки фрейма данных в соответствии с алгоритмом WEP.

В дополнение к шифрованию данных спецификация стандарта 802.11 предлагает использовать 32-разрядное значение, функция которого — осуществлять контроль це­лостности. Этот контрольный признак целостности говорит приемнику о том, что фрейм был получен без повреждения в процессе передачи.

Контрольный признак целостности вычисляется по всем полям фрейма с использо­ванием 32-разрядной полиномиальной функции контроля и с помощью циклического избыточного кода (CRC-32). Станция-отправитель вычисляет это значение и помещает результат в поле ICV. Значение поля ICV включается в часть фрейма, шифруемую по алгоритму WEP, так что его не могут просто так "увидеть" злоумышленники. Получа­тель фрейма дешифрует его, вычисляет значение ICV и сравнивает результат со значе­нием поля ICV полученного фрейма. Если эти значения совпадают, фрейм считается подлинным, неподдельным. Если они не совпадают, такой фрейм отбрасывается. На рис. 7 представлена диаграмма функционирования механизма ICV.

Рис. 6. Процесс шифрования и дешифрования

Рис. 7. Диаграмма функционирования механизма ICV

Механизмы аутентификации стандарта 802.11

Спецификация стандарта 802.11 оговаривает два механизма, которые могут приме­няться для аутентификации клиентов WLAN.

  • Открытая аутентификация (open authentication).
  • Аутентификация с совместно используемым ключом (shared key authentication).

Открытая аутентификация по сути представляет собой алгоритм с нулевой аутентифи­кацией (null authentication algorithm). Точка доступа принимает любой запрос на аутенти­фикацию. Это может быть просто бессмысленный сигнал, используемый для указания на применение именно этого алгоритма аутентификации, тем не менее, открытая аутентифи­кация играет определенную роль в сетях стандарта 802.11. Столь простые требования к ау­тентификации позволяют устройствам быстро получить доступ к сети.

Контроль доступа при открытой аутентификации осуществляется с использовани­ем заранее сконфигурированного WEP-ключа в точке доступа и на клиентской стан­ции. Эта станция и точка доступа должны иметь одинаковые ключи, тогда они могут связываться между собой. Если станция и точка доступа не поддерживают алгоритм WEP, в BSS невозможно обеспечить защиту. Любое устройство может подключиться к такому BSS, и все фреймы данных передаются незашифрованными.

После выполнения открытой аутентификации и завершения процесса ассоциирования клиент может начать передачу и прием данных. Если клиент сконфигурирован так, что его ключ отличается от ключа точки доступа, он не сможет правильно зашифровывать и рас­шифровывать фреймы, и такие фреймы будут отброшены как точкой доступа, так и кли­ентской станцией. Этот процесс предоставляет собой довольно-таки эффективное средство контроля доступа к BSS (рис. 8).

Рис. 8. Процесс открытой аутентификации при различии WEP-ключей

В отличие от открытой аутентификации, при аутентификации с совместно исполь­зуемым ключом требуется, чтобы клиентская станция и точка доступа были способны поддерживать WEP и имели одинаковые WEP-ключи. Процесс аутентификации с со­вместно используемым ключом осуществляется следующим образом.

1.  Клиент посылает точке доступа запрос на аутентификацию с совместно исполь­зуемым ключом.

2. Точка доступа отвечает фреймом вызова (challenge frame), содержащим откры­тый текст.

3.  Клиент шифрует вызов и посылает его обратно точке доступа.

4.  Если точка доступа может правильно расшифровать этот фрейм и получить свой исходный вызов, клиенту посылается сообщение об успешной аутентификации.

5.  Клиент получает доступ к WLAN.

Предпосылки, на которых основана аутентификация с совместно используе­мым ключом, точно такие же, как и те, которые предполагались при открытой ау­тентификации, использующей WEP-ключи в качестве средства контроля доступа. Разница между этими двумя схемами состоит в том, что клиент не может ассо­циировать себя с точкой доступа при использовании механизма аутентификации с совместно используемым ключом, если его ключ не сконфигурирован должным образом. На рис. 9 схематично представлен процесс аутентификации с совместно используемым ключом.

Рис. 9. Процесс аутентификации с совместно используемым ключом

Аутентификация с использованием МАС-адресов

Аутентификация с использованием МАС-адресов не специфицирована стан­дартом 802.11. но обеспечивается многими производителями. В ходе аутентифи­кации с использованием МАС-адресов проверяется соответствие МАС-адреса клиента локально сконфигурированному списку разрешенных адресов или спи­ску, хранящемуся на внешнем аутентификационном сервере (рис. 10). Аутенти­фикация с использованием МАС-адресов усиливает действие открытой аутенти­фикации и аутентификации с совместно используемым ключом, обеспечиваемы­ми стандартом 802.11, потенциально снижая тем самым вероятность того, что неавторизованные устройства получат доступ к сети. Например, администратор сети может пожелать ограничить доступ к определенной точке доступа для трех конкретных устройств. Если все станции и все точки доступа BSS используют одинаковые WEP-ключи, при использовании открытой аутентификации и аутен­тификации с совместно используемым ключом такой сценарий реализовать труд­но. Чтобы усилить действие механизма аутентификации стандарта 802.11, он мо­жет применить аутентификацию с использованием МАС-адресов.

Рис. 10. Процесс аутентификации с использованием МАС-адресов

Уязвимость системы защиты стандарта 802.11

В предыдущем разделе рассказывалось о том, как осуществляются аутентификация и шифрование при использовании устройств стандарта 802.11. Не секрет, что система зашиты, специфицированная в стандарте 802.11, несовершенна. Вскоре после утвер­ждения стандарта 802.11 появились статьи, в которых указывались слабые места меха­низма аутентификации стандарта 802.11 и шифрования по алгоритму WEP.

Уязвимость открытой аутентификации

При использовании механизма открытой аутентификации точка доступа не имеет возможности проверить правомочность клиента. Отсутствие такой возможности явля­ется недостатком системы защиты, если в беспроводной локальной сети не использу­ется WEP-шифрование. Даже при использовании и клиентом, и точкой доступа ста­тичного WEP механизм открытой аутентификации не предоставляет средств для опре­деления того, кто использует устройство WLAN. Авторизованное устройство в руках неавторизованного пользователя — это угроза безопасности, равносильная полному отсутствию какой-либо защиты сети!

Уязвимость аутентификации с совместно используемым ключом

В случае аутентификации с совместно используемым ключом необходимо, чтобы клиент использовал заранее выделенный для совместного использования ключ и шифровал текст вызова, полученного от точки доступа. Точка доступа аутентифици­рует клиента путем расшифровки зашифрованного с помощью совместно используе­мого ключа ответа и проверки того, что полученный текст вызова полностью соответ­ствует отправленному.

Процесс обмена текстом вызова осуществляется по беспроводному каналу связи и является уязвимым для атаки, возможной при знании открытого текста. Эта уязви­мость в случае аутентификации с совместно используемым ключом обусловлена мате­матическими методами, лежащими в основе шифрования. Ранее в этой главе говори­лось о том, что процесс кодирования состоит в перемешивании открытого текста с ключевым потоком и получении в результате зашифрованного текста. Процесс пе­ремешивания представляет собой выполнение двоичной математической операции, которая называется "исключающее ИЛИ" (XOR). Если открытый текст перемешать с соответствующим зашифрованным текстом, в результате выполнения этой операции будет получена следующая пара: ключевой поток, используемый для WEP-ключа, и вектор инициализации (рис. 11).

Злоумышленник может захватить как открытый, так и зашифрованный текст отве­та. Выполнив над этими значениями операцию "исключающее ИЛИ", он может по­лучить действующий ключевой поток. Затем злоумышленник может использовать этот ключевой поток для расшифровки фреймов, имеющих такой же размер, как и ключе­вой поток, поскольку вектор инициализации, используемый для получения ключевого потока, такой же, как и у расшифрованного фрейма. На рис. 12 показано, как атакующий сеть злоумышленник может проследить процесс аутентификации с совместно используемым ключом и заполучить ключевой поток.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать