Пусть для зашифрования нормативного английского языка применяется шифр простой замены, в котором каждый из 26! ключей может быть выбран с равной вероятностью. Пусть противник знает об источнике сообщений лишь то, что он создает английский текст. Тогда априорными вероятностями различных сообщений из N букв являются их относительные частоты в нормативном тексте. Если же противник перехватил крипто грамму из N букв, то он может вычислить условные вероятности открытых текстов и ключей, которые могут создать такую криптограмму. Если N достаточно велико, скажем N = 50, то обычно имеется единственное сообщение (и единственный ключ) с условной вероятностью, близкой к единице (это — само сообщение, подвергнутое шифрованию), в то время как все другие сообщения имеют суммарную вероятность, близкую к нулю. Таким образом, имеется, по существу, единственное "решение" такой криптограммы. Для меньших значений N, скажем N = 10, обычно найдется несколько пар сообщений и ключей, вероятности которых сравнимы друг с другом, то есть, нет ни одного сообщения (и ключа) с вероятностью, близкой к единице. В этом случае "решение" криптограммы неоднозначно.
Понятие совершенной секретности К. Шеннон определяет требованием, чтобы апостериорные знания противника в точности совпадали бы с априорными знаниями. Он приводит пример совершенного шифра, которым является шифр Вернама (со случайной равновероятной гаммой). Следует подчеркнуть, что все рассуждения о стойкости шифров К. Шеннон проводит лишь для одной постановки задачи криптоанализа: когда противник располагает лишь одной криптограммой и требуется найти текст сообщения. Для других постановок задач требуются отдельные исследования.
Теоретической мерой секретности (или стойкости) по К.Шеннону является энтропийная характеристика — неопределенность шифра по открытому сообщению, которая измеряет (в статистическом смысле), насколько "близка" средняя криптограмма из N букв к единственному "решению". Он выводит формулу для приближенного вычисления минимального N, при котором находится единственное "решение". Такая величина получила название расстояния единственности. Формула для расстояния единственности связывает между собой неопределенность шифра по открытому тексту и избыточность текста. Чем большим оказывается расстояние единственности, тем более шифр приближается к совершенному шифру, для которого формально расстояние единственности равно .
Наконец, К. Шеннон вводит понятие рабочей характеристики шифра, подходя к практической оценке стойкости. Он формулирует также основные критерии оценки качества секретных систем с позиций практики их использования.
Как видим, К. Шеннону удалось решить фундаментальные проблемы в теоретической криптографии. Его работы стимулировали бурный рост научных исследований по теории информации и криптографии.
В работах К. Шеннона по исследованию свойств языка важную роль играет величина удельной энтропии Н на букву текста, другими словами, среднее количество информации, передаваемой буквой открытого текста. Предложенный им метод экспериментов с угадыванием очередной буквы английского текста по предыдущим буквам оказался неэффективным при получении оценок величины Н для других языков. Метод "отгадывания" развил в своих работах А. Н. Колмогоров. Достаточно точные приближения параметра Н для русского и французского языков получил Б. Б. Пиотровский. Он указал на существенную разницу между значениями Н для текстов различного характера (литературных, деловых, разговорной речи).
Понятие "количества информации", содержащейся в тексте, базировалось, по К. Шеннону, лишь на частотных характеристиках. В своих фундаментальных работах 60-х годов А. Н. Колмогоров подошел к определению количества информации с учетом смыслового содержания текста, что позволило уточнить приближение величины Н для литературных текстов. Необходимо также отметить, что еще задолго до К. Шеннона частотные характеристики языка изучал выдающийся русский ученый А. А. Марков. Сегодня часто используются так называемые марковские модели открытых текстов, учитывающие зависимости букв текста от предыдущих букв.
Следующая страница в истории криптографии XX в. посвящена телефонным шифраторам, которые были разработаны в 30-х годах и стали широко использоваться во время второй мировой войны. В России разработка телефонного шифратора велась под руководством В.А.Котельникова, ставшего впоследствии академиком, ученым с мировым именем. Ему принадлежит знаменитая теорема дискретизации (или теорема отсчетов), лежащая в основе теории цифровой обработки сигналов.
Согласно, идея телефонного шифратора была запатентована Д. Х. Роджерсом еще в 1881 г., спустя пять лет после изобретения Беллом телефона. Идея состояла в передаче телефонного сообщения по нескольким (в простейшем случае — по двум) цепям поочередными импульсами в некоторой быстро изменяющейся последовательности. Предлагалось разнести такие линии на значительное расстояние друг от друга с тем, чтобы устранить возможность подключения сразу ко всем одновременно. Подключение же к одной из них позволяло бы слышать лишь отдельные неразборчивые сигналы.
В более поздних разработках предлагались различные преобразования непосредственно самой речи. Звуки речи преобразуются телефоном в непрерывный электрический сигнал, который с помощью соответствующих устройств изменяется шифратором по законам электричества. К числу возможных изменений относятся: инверсия, смещение, или деление диапазона частот, шумовые маскировки, временные перестановки частей сигнала, а также различные комбинации перечисленных преобразований. Естественно, каждое из указанных преобразований производится под управлением ключа, который имеется у отправителя и получателя. Наиболее просто реализуемым являлось преобразование инверсии. Сложнее реализовались временные перестановки. Для их осуществления речевой сигнал в некоторый промежуток времени предварительно записывался на магнитофонной ленте. Запись делилась на отрезки длительностью в доли секунд. Отрезки с помощью нескольких магнитных головок разносились и перемешивались, в результате чего в канале слышалась хаотическая последовательность звуков. Использовалась также движущаяся магнитная головка, которая в зависимости от направления движения считывала сигналы быстрее или медленнее, чем они были записаны на ленте. В результате тон сигналов становился выше или ниже обычного, в канале быстро чередовались высокие и низкие звуки, не воспринимаемые ухом. Следует отметить, что одной из самых сложных проблем, которые возникали при разработке телефонных шифраторов, была проблема узнавания восстановленной после расшифрования речи.
В США первый телефонный шифратор, под названием A3, был принят в эксплуатацию в 1937 г. Именно он доставил президенту Рузвельту известие о начале второй мировой войны утром 1 сентября 1939 г. по вызову американского посла в Париже. A3 осуществлял инверсию и перестановку 5 поддиапазонов частот. Из 3840 возможных комбинаций () фактически использовались лишь 6, которые менялись 36 раз за каждые 20 секунд. Слабость используемой криптографии компенсировалась регулярным изменением частот передачи.
В настоящее время аналоговая телефония уступает место цифровой телефонии. Тем самым и многие технические проблемы, связанные с криптографическими преобразованиями аналоговых сигналов, отпадают за ненадобностью. Дело в том, что оцифрованный сигнал является дискретным и, следовательно, к нему можно применить хорошо разработанную надежную "дискретную криптографию".
Во второй половине XX в., вслед за развитием элементной базы вычислительной техники, появились электронные шифраторы, разработка которых потребовала серьезных теоретических исследований во многих областях прикладной и фундаментальной математики, в первую очередь алгебре, теории вероятностей и математической статистике. Сегодня именно электронные шифраторы составляют подавляющую долю средств шифрования. Они удовлетворяют все возрастающим требованиям по надежности и скорости шифрования. Прогресс в развитии вычислительной техники сделал возможными программные реализации криптографических алгоритмов, которые все увереннее вытесняют во многих сферах традиционные аппаратные средства.
В семидесятых годах произошло два события, серьезно повлиявших на дальнейшее развитие криптографии. Во-первых, был принят (и опубликован!) первый стандарт шифрования данных (DES), "легализовавший" принцип Керкгоффса в криптографии. Во-вторых, после работы американских математиков У. Диффи и М. Хеллмана родилась "новая криптография"— криптография с открытым ключом. Оба этих события были рождены потребностями бурно развивающихся средств коммуникаций, в том числе локальных и глобальных компьютерных сетей, для защиты которых потребовались легко доступные и достаточно надежные криптографические средства. Криптография стала широко востребоваться не только в военной, дипломатической, государственной сферах, но также в коммерческой, банковской и других сферах.
Вслед за идеей Диффи и Хеллмана, связанной с гипотетическим понятием однонаправленной (или односторонней) функции с секретом, появились "кандидат" на такую функцию и реально осуществленная шифрсистема RSA с открытым ключом. Такая система была предложена в 1978 г. Райвестом, Шамиром и Адлеманом. Парадоксальным казалось то, что в RSA для зашифрования и расшифрования используются разные ключи, причем ключ зашифрования может быть открытым, то есть всем известным. Вслед за RSA появился целый ряд других систем. В связи с несимметричным использованием ключей стал использоваться термин асимметричная шифрсистема, в то время как традиционные шифрсистемы стали называться симметричными.
Наряду с идеей открытого шифрования Диффи и Хеллман предложили идею открытого распределения ключей, позволяющую избавиться от защищенного канала связи при рассылке криптографических ключей. Их идея основывалась на сложности решения задачи дискретного логарифмировании, то есть задачи, являющейся обратной для задачи возведения в степень в конечном поле большого порядка.
Заключение.
Появление в середине двадцатого столетия первых электронно-вычислительных машин кардинально изменило ситуацию в области шифрования (криптографии). С проникновением компьютеров в различные сферы жизни возникла принципиально новая отрасль - информационная индустрия.
В 60-х и частично в 70-х годах проблема защиты информации решалась достаточно эффективно применением в основном организационных мер. К ним относились прежде всего режимные мероприятия, охрана, сигнализация и простейшие программные средства защиты информации. Эффективность использования указанных средств достигалась за счет концентрации информации на вычислительных центрах, как правило автономных, что способствовало обеспечению защиты относительно малыми средствами. "Рассосредоточение" информации по местам ее хранения и обработки, чему в немалой степени способствовало появление в огромных количествах дешевых персональных компьютеров и построенных на их основе локальных и глобальных национальных и транснациональных сетей ЭВМ, использующих спутниковые каналы связи, создание высокоэффективных систем разведки и добычи информации, обострило ситуацию с защитой информации.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14