Измерения и неразрушающий контроль на железнодорожном транспорте
Министерство транспорта Российской Федерации
Федеральное агентство железнодорожного транспорта
Государственное образовательное учреждение
Высшего профессионального образования
“Омский Государственный университет путей сообщения”
(ОмГУПС)
Кафедра: Теоретическая электротехника
РЕФЕРАТ
“Измерения и неразрушающий контроль на железнодорожном транспорте.”
Выполнила:
Студентка
ИМЭК 57 к
Куликова Василина Игоревна
Проверил:
Мешкова Ольга Борисовна
Г.Омск
2008 год
Содержание
Введение
I. Ультразвуковая дефектоскопия.
II. Акустико-эмиссионный контроль режимов шлифования.
III. Магнитопорошковый метод неразрушающего контроля.
IV. Визуально-оптический контроль деталей.
V. Методы неразрушающего контроля состояния рельсов.
VI. Неразрушающий контроль при ремонте и техническом обслуживании подвижного состава.
VII. Библиографический список.
ВВЕДЕНИЕ
Современные технологические процессы изготовления продукции машиностроения во многих случаях сопровождаются промежуточным контролем качества изделий. В связи с этим важное значение приобретают неразрушающие методы контроля качества, которые позволяют не только обнаруживать дефекты на поверхности или в толще изделия, но и определять их форму и размеры, а также пространственное положение. Каждый из этих методов обладает определенными преимуществами, что позволяет с большей точностью выявлять те или иные типы дефектов.
Процессы образования и роста дефектов ставят под угрозу возможность безаварийной эксплуатации подвижного состава. Обеспечение безопасности движения за счет своевременного обнаружения заводских и усталостных дефектов в ответственных элементах пути и подвижного состава приносит огромный экономический эффект и служит сохранению человеческих жизней. Решение этой проблемы достигается современными физическими методами неразрушающего контроля.
В настоящее время неразрушающий контроль представляет собой самостоятельную интенсивно развивающуюся на стыке физического материаловедения и технологии отрасль науки и техники, которая находит широкое применение в различных сферах производства и особенно на транспорте.
Практика показывает, что правильная организация контроля, а также умелое использование того или иного метода контроля, разумное сочетание этих методов позволяют с большой надежностью оценить наличие дефектов контролируемых изделий.
I. УЛЬТРАЗВУКОВАЯ ДЕФЕКТОСКОПИЯ
1.1. Краткие теоретические сведения
1.1.1. Физические основы
Ультразвуковые колебания являются одним из многочисленных примеров колебаний, имеющих место в природе (морские волны, ветровые импульсы и т. д.) и возникающих под действием одного или, что гораздо чаще, нескольких непрерывно действующих импульсов.
Ультразвуковые волны получили широкое применение в народном хозяйстве, в механических, физических, химических процессах, в медицине. Ультразвуковые колебания широко применяются для контроля качества материала, сварных соединений и др. Для этих целей пьезоэлектрическим преобразователем возбуждаются ультразвуковые колебания. Возбуждение их происходит в результате так называемого пьезоэффекта - электрические колебания, поданные на пластину, преобразуются в механические. Это имеет место в пластинах из кварца, титаната бария и других материалов вследствие перестройки в них положения кристаллов, оси которых под действием проходящего тока поворачиваются в металле, и в результате этого поворота изменяется и суммарная длина пластины. Эти удлинения, следующие непрерывно друг за другом, создают волну.
Частота колебаний, возбуждаемая ультразвуком, может варьироваться в широких пределах - от 0,5 - 1,0 Гц до 20 МГц.
Между изделием и ультразвуковым преобразователем акустический контакт создают путем введения слоя воды или незамерзающей магнитной жидкости. Если акустический контакт невозможен, то применяют бесконтактный ввод ультразвуковых колебаний с помощью электромагнитных акустических преобразователей (ЭМА), чувствительность которых ниже, чем у пьезоэлектрических.
Волны передают механическую энергию, а скорость их перемещения определяется лишь свойствами колеблющейся среды:
(1.1)
где - длина волны;
- частота.
Приближенно скорость распространения продольной волны определяется по формуле:
(1.2)
где Е - модуль упругости;
р—плотность среды, подверженной колебаниям.
Скорость распространения поперечной волны определяется по формуле:
(1.3)
где G - модуль поперечной упругости,
-коэффициент поперечного сокращения Пуассона, для стали - 0,3.
1.1.2. Аппаратура ультразвукового (УЗ) контроля
Процессы преобразования энергии УЗ-колебаний происходят в трех трактах дефектоскопа:
- электроакустический тракт, где электрические колебания преобразуются в ультразвуковые и обратно, состоит из пьезопреобразователей, демпферов, переходных и контактных слоев, электрических колебательных контуров генератора;
- электрический тракт состоит из генератора, усилителя и определяет амплитуду зондирующего импульса;
- акустический тракт определяет путь от излучателя до отражателя в металле и обратно - от отражателя до приемника.
Ультразвуковые дефектоскопы предназначены для излучения УЗ-колебаний, приема эхо-сигналов, установления положения и размеров дефектов. Аппаратура УЗ-контроля включает в себя пьезопреобразователь, электронный блок и вспомогательные устройства.
Основной частью пьезопреобразователя является пьезоэлемент, например пластина кварца или титаната бария в виде диска толщиной, равной половине длины волны ультракоротких (УК) колебаний. Преобразователи разделяются на прямые (вводят продольную волну перпендикулярно контролируемой поверхности); наклонные (вводят поперечную волну под углом к поверхности); раздельно-смещенные (вводят продольную волну под углом 5 - 10° к плоскости, перпендикулярной поверхности ввода).
Прямой УЗ-преобразователь состоит из корпуса, пьезопластины, окруженной с одной стороны демпфером, сокращающим длительность свободных колебаний, а с другой - защитным донышком , предохраняющим ее от механических повреждений.
Наклонный преобразователь имеет пьезопластину , приклеенную к призмам из полимеров (оргстекло, полистирол и др.). Малая скорость распространения волн в полимерах позволяет при малых углах падения волн на объект вводить поперечные волны под большим углом. Когда ультразвуковой импульс достигает противоположной стороны образца, он отражается от нее и продолжает зигзагообразный путь между двумя поверхностями.
Прямые и наклонные преобразователи работают по совмещенной схеме: один и тот же пьезоэлемент служит в качестве излучателя и приемника. Выпускают также раздельно-совмещенные преобразователи (рис. 1.1, в), у которых имеются две пьезопластины: одна подключается к генератору излучения (Г), другая - к приемнику (П). Между ними устанавливается акустический экран.
б в
Рис. 1.1. Ультразвуковые преобразователи:
а - прямой; б - наклонный (призматический); в - раздельно-совмещенный (PC); 1 - корпус; 2 - демпфер; 3 - пьезопластина; 4 - защитное донышко (протектор); 5 - призма; 6 — токоподвод; 7 - акустический экран
Электронный блок генерирует импульсы с высокой степенью частоты, усиливает и преобразует эхо-сигналы, отраженные от объекта, и отображает указанные эхо-сигналы на телевизионной трубке.
Дефектоскопы работают по следующей схеме. От блока синхронизатора тактовые импульсы поступают в генератор зондирующих импульсов и запускают его. При подаче запускающего импульса в контуре, состоящем из индуктивности, емкости накопительного конденсатора, возникают радиочастотные колебания, называемые зондирующими импульсами. Последние возбуждают в пьезопластине ультразвуковые колебания. Одновременно тактовые импульсы с синхронизатора подаются и на генератор развертки электронно-лучевой трубки. Скорость развертки регулируется в зависимости от толщины прозвучивае-мого металла.
Отраженные от дефекта импульсы упругих колебаний подаются па пье-зопластину и преобразуются в ней в электросигналы. Эти колебания усиливаются в усилителе, затем подаются на экран электронно-лучевой трубки. При развертке расстояние от зондирующего импульса до принятого сигнала пропорционально времени прохождения импульса от пьезопластины до дефекта и обратно. По числовым значениям скорости и времени прохождения ультразвука можно определить координаты дефекта. Отклонение луча на электроннолучевой трубке в вертикальном направлении характеризует амплитуду сигнала и пропорционально значению размера дефекта.
Амплитуда измеряется градуированными приборами - аттенюаторами, имеющимися в дефектоскопах. Дефектоскоп также содержит автоматизированный сигнализатор для звуковой и световой индикации дефектов.
1.1.3. Ультразвуковой дефектоскоп ДУК-13ИМ
Дефектоскоп предназначен для выявления внутренних дефектов в изделиях из металлов (трещин, пор, расслоений, непроваров, шлаковых включений и т. д.), определения их координат в сварных и клепаных соединениях.