7. Технико-экономическое обоснование выбора напряжения питающей линии ГПП
Задачей технико-экономических расчетов является выбор оптимального варианта передачи, преобразования и распределения электроэнергии от источника питания до потребителей.
Критерием оптимального варианта служит минимум приведенных годовых затрат:
, где
- нормативный коэффициент эффективности капитальных вложений
- единовременные капитальные вложения
- суммарные годовые эксплуатационные расходы
7.1 Выбор и обоснование схемы внешнего электроснабжения
В качестве схемы внешнего электроснабжения принимаем схему: два блока с отделителями и неавтоматической перемычкой со стороны линий [2].
Рис. 7 Схема внешнего электроснабжения
Данная схема удовлетворяет основным требованиям, предъявляемым к схемам электрических соединений:
· Схема обеспечивает надежное питание присоединенных потребителей в нормальном, ремонтном и послеаварийном режимах.
· Схема обеспечивает надежность транзита мощности через подстанцию в нормальном, ремонтном и послеаварийном режимах.
· Схема является простой, наглядной и экономичной.
7.2 Выбор сечения проводников для двух классов напряжений
Выбор сечения проводов проводим по экономической плотности тока в нормальном и послеаварийном режимах.
Правильно выбранное сечение должно удовлетворять следующим требованиям:
· По перегрузке
· По допустимой потере напряжения ( - нормальном режиме, - в послеаварийном)
· По потере на корону (для 110 кВ и выше)
Экономическое сечение:
, где
- нормированное значение экономической плотности тока при
Вариант 1:
Принимаем ближайшее стандартное сечение . Выбираем сталеалюминевые провода марки АС-70, допустимый ток [2].
Для принятого сечения проводим все необходимые проверки:
1) По аварийному току:
2) По механической прочности:
Для сталеалюминевых проводов минимальное сечение по условию механической прочности составляет .
3) По допустимой потере напряжения:
Допустимая длина питающей линии:
, где
- длина линии, при полной нагрузке на которой, потеря напряжения равна 1% [3].
- допустимая потеря напряжения в нормальном режиме
4) По короне:
Проверка на корону осуществляется для линий напряжением 110 кВ и выше. Следовательно, для данного варианта данную проверку не проводим.
Выбранное сечение удовлетворяет всем условиям.
Вариант 2:
Принимаем ближайшее стандартное сечение . Выбираем сталеалюминевые провода марки АС-70 [2].
Для принятого сечения проводим все необходимые проверки:
1) По короне:
Условие: , где
Если , то:
- начальная напряженность возникновения коронного разряда
- радиус провода марки АС-70[4]
- коэффициент гладкости провода
- относительная плотность воздуха, определяемая атмосферным давлением и температурой воздуха
- напряженность электрического поля около поверхности нерасщепленного провода
- для железобетонной двухцепной опоры ПБ-110-4 (СК-4), подвеска проводов типа «бочка» [5]
Таким образом,
- условие выполняется.
Выбранное сечение удовлетворяет всем условиям.
2) По аварийному току:
3) По механической прочности:
Для сталеалюминевых проводов минимальное сечение по условию механической прочности составляет .
4) По допустимой потере напряжения:
Допустимая длина питающей линии:
Выбранное сечение удовлетворяет всем условиям.
7.3 Технико-экономические сравнения рассматриваемых вариантов ВЛЭП
Капитальные затраты
Вариант 1:
, где
- стоимость сооружения одного километра линии на стальных двухцепных опорах [2]
- длина ВЛЭП
ОРУ содержит в себе два блока с отделителем и неавтоматической перемычкой, стоимостью [2]:
Вариант 2:
, где
- стоимость сооружения одного километра линии на железобетонных двухцепных опорах [2]
Эксплуатационные затраты
Вариант 1:
Стоимость потерь энергии в линиях:
, где
- число цепей ВЛЭП,
- удельные потери (на одну цепь) при номинальной загрузке ЛЭП, т.е. при [3]
- стоимость электроэнергии. Принимаем
- время максимальных потерь,
Отчисления на амортизацию и обслуживание элементов:
, где
- издержки на амортизацию и обслуживание ЛЭП
- издержки на амортизацию и обслуживание силового оборудования ОРУ 35 кВ
Вариант 2:
Стоимость потерь энергии в линиях:
, где
Отчисления на амортизацию и обслуживание элементов:
Полные затраты
Вариант 1:
, где
- нормативный коэффициент капитальных вложений в ЛЭП
- нормативный коэффициент капитальных вложений в силовое оборудование
Вариант 2:
8. Технико-экономические расчеты по выбору варианта ГПП
8.1 Капитальные затраты на трансформаторы и стоимость потерь электроэнергии в них
Вариант 1:
·
где, - суммарные годовые эксплуатационные расходы
- единовременные кап. затраты в трансформаторы [2]
- стоимость потерь электроэнергии в трансформаторах
- потери электроэнергии в раздельно-работающих трансформаторах, кВт*ч/год (табл.6)
Вариант 2:
·
где, - единовременные кап. затраты в трансформаторы [2]
, где
Вариант 3:
·
, где
Вариант 4:
·
, где
8.2 Полные затраты по вариантам
Полные затраты по всем вариантам сведем в таблицу.
Таблица 10
Вариант |
Полные затраты по ВЛЭП, тыс.у.е. |
Полные затраты по трансформаторам |
Полные затраты по варианту |
|
При раздельной работе, тыс.у.е. |
При раздельной работе, тыс.у.е. |
|||
Вариант 1 |
138,334 |
999,652 |
1137,986 |
|
Вариант 2 |
138,334 |
359,714 |
498,048 |
|
Вариант 3 |
62,79 |
625,652 |
688,442 |
|
Вариант 4 |
62,79 |
370,704 |
433,494 |
|
9. Выбор оптимального варианта схемы внешнего электроснабжения
В результате технико-экономического сравнения рассмотренных вариантов была выбрана двухцепная ВЛЭП 110 кВ, выполненная на железобетонных опорах проводом марки АС-70. А также вариант установки на ГПП двух раздельно- работающих трансформаторов мощностью 6300 кВА (ТМН-6300/110).
II. Технико-экономическое обоснование выбора компенсирующих устройств в системе электроснабжения вагоноремонтного завода
1. Выбор схемы электроснабжения предприятия для определения реактивной мощности, подлежащей компенсации
Основной задачей компенсации реактивной мощности является снижение потерь активной мощности и регулирование напряжения. Эту задачу целесообразно рассматривать как с технической, так и с экономической точек зрения. Экономическая сторона этого вопроса заключается в том, что необходимо минимизировать сумму капитальных вложений и эксплуатационных затрат компенсационного оборудования. С технической точки зрения необходимо подобрать необходимое оборудование и выбрать наиболее оптимальное место его размещения. С точки зрения экономии электроэнергии и регулирования напряжения компенсацию реактивной мощности наиболее целесообразно осуществлять в месте возникновения ее дефицита.
Рис. 8 Схема компенсации реактивной мощности
Определяем - наибольшее значение реактивной мощности, передаваемой из сети ЭС в сеть промышленного предприятия в режиме наибольших активных нагрузок энергосистемы:
, где
- суммарная расчетная активная мощность, отнесенная к шинам ГПП 6 кВ
- расчётный коэффициент, соответствующий средним условиям передачи реактивной мощности по сети системы к потребителям с учётом различных затрат на потери мощности и электроэнергии; для предприятий, расположенных в Сибири при напряжении питающей линии 110 кВт [7]
2. Составление баланса реактивной мощности и выбор двух вариантов ее компенсации
Реактивную мощность, вырабатываемую синхронным двигателем, можно принять равной:
, где
- номинальная активная мощность синхронного двигателя
Мощность, которую можно передать из сети 6 кВ в сеть 0,4 кВ:
Далее рассмотрим два варианта схем компенсации реактивной мощности:
1. Схема, содержащая 9 трансформаторов (которые выбраны ранее)
2. Схема с увеличенным числом трансформаторов
Наибольшая реактивная мощность, которая может быть передана через трансформаторы в сеть 0,4 кВ:
, где
– номинальная мощность трансформаторов
– коэффициент загрузки трансформатора, принимаемый 0,7÷0,8
– количество трансформаторов
Вариант 1:
Наибольшая реактивная мощность, которая может быть передана через 9 трансформаторов в сеть 0,4 кВ:
Величина реактивной мощности, которую необходимо скомпенсировать:
Принимаем конденсаторные батареи марки УКБ-0,38-200У3 в количестве 11 шт., общей мощностью 2200 кВАр.
Вариант 2:
Увеличиваем количество трансформаторов до 10 шт.
Наибольшая реактивная мощность, которая может быть передана через 10 трансформаторов в сеть 0,4 кВ:
Величина реактивной мощности, которую необходимо скомпенсировать:
Принимаем конденсаторные батареи марки УКБ-0,38-150У3 в количестве 6 шт., общей мощностью 900 кВАр.
3. Технико-экономическое сравнение вариантов
Удельные затраты для синхронного двигателя, используемого в качестве ИРМ:
· удельные затраты на 1 кВАр реактивной мощности:
, где
- стоимость потерь активной мощности (для Томска )
- число однотипных СД
- реактивная мощность, генерируемая СД до присоединения к сети проектируемого предприятия, т.к. СД вводится вновь, то
,- расчетные величины, зависящие от параметров двигателя. Для двигателя марки СДН , [8]
· удельные затраты на 1 кВАр2 реактивной мощности:
Удельные затраты на установку БК в сети 0,4 кВ:
, где
- постоянная составляющая затрат для КБ, принимаемая
- нормативный коэффициент кап. вложений
- мощность КБ
- удельные потери активной мощности в КБ [1]
- напряжение КБ; т.к. КБ, присоединяемые к сети 0,4 кВ, выполняются на номинальное напряжение сети (т.е. на 0,4 кВ), то
Вариант 1:
- удельные затраты на установку КБ марки УКБ-0,38-200У3 [1]
Вариант 2:
- удельные затраты на установку КБ марки УКБ-0,38-150У3 [1]
Полные затраты по вариантам:
Вариант 1:
Вариант 2:
, где
- стоимость трансформатора мощностью Sном=630 кВА наружной установки [8]
Так как , то оптимальным вариантом компенсации реактивной мощности является вариант 1 установки 9 трансформаторов и конденсаторных батарей, марки УКБ-0,38-200У3 в количестве 11 шт., общей мощностью 2200 кВАр.
4. Распределение мощности батарей конденсаторов по узлам нагрузки инструментального цеха
Рис. 9 Расчетная схема сети 0,4 кВ
Суммарная мощность КБ на стороне 0,4 кВ, приходящаяся на кузнечный цех:
· расчетная реактивная нагрузка 0,4 кВ вагоноремонтного завода:
· расчетная реактивная нагрузка 0,4 кВ инструментального цеха:
· доля потребления реактивной нагрузки 0,4 кВ кузнечного цеха по отношению ко всему заводу:
· общая мощность КБ на стороне 0,4 кВ вагоноремонтного завода:
· тогда суммарная мощность КБ на стороне 0,4 кВ, приходящаяся на кузнечный цех:
Наибольшая реактивная мощность, которая может быть передана через трансформатор цеховой ТП-7 в сеть 0,4 кВ:
, где
- расчетная активная нагрузка ТП-7
Мощность, передаваемая со стороны 6 кВ в цех:
, тогда распределение КБ для радиальной сети производится по формуле:
, где
- искомая мощность i-ой линии, передаваемая в сеть 0,4 кВ со стороны 6 кВ
- суммарная распределяемая мощность
- эквивалентное сопротивление сети, напряжением до 1000 В
- сопротивление радиальной i-ой линии
Эквивалентное сопротивление сети:
Тогда:
Расчетная мощность батарей конденсаторов, устанавливаемых у ШР:
Учитывая шкалу номинальных мощностей принимаем:
Суммарная мощность КБ:
Заключение
В данной работе было проведено технико-экономическое обоснование выбора компенсирующих устройств и напряжения питающей линии ГПП вагоноремонтного завода.
В результате расчетов был определен наиболее оптимальный вариант схемы внешнего электроснабжения предприятия. Была выбрана двухцепная ВЛЭП 110 кВ, выполненная на железобетонных опорах проводом марки АС-70; на ГПП установлено два параллельно работающих трансформатора мощностью 6300 кВА (ТМН-6300/110).
После проведения технико-экономического сравнения вариантов установки компенсирующих устройств было принято решение об установке 9 цеховых трансформаторов мощностью 630 кВАр и 11 конденсаторных батарей марки УКБ-0,38-200У3, общей мощностью 2200 кВАр.
Таким образом, технико-экономического сравнение нескольких вариантов позволило выбрать наиболее оптимальный вариант, критерием которого служит минимум приведенных затрат.
Литература
1. Коновалова Л.Л., Рожкова Л.Д., Электроснабжение промышленных предприятий и установок: Учеб. пособие для техникумов. – М.: Энергоатомиздат, 1989. - 528с.
2. Справочник по проектированию электроэнергетических систем / В.В. Ершевич, А.Н. Зейлигер, Г.А. Илларионов и др.; Под ред. С.С. Рокотяна и И.М. Шапиро, - 3-е изд., перераб. и доп. – М.: Энергоатомиздат, 1985. – 352 с.
3. Электроснабжение промышленных предприятий. Методические указания к выполнению курсового проекта для студентов специальности 100400 «Электроснабжение» / Сост. А.И. Гаврилин, С.Г. Обухов, А.И. Озга; ТПУ. – Томск, 2004. – 112 с.
4. Рожкова Л.Д., Козулин В.С., Электрооборудование станций и подстанций. – М.: Энергоатомиздат, 1987. – 646 с.
5. Справочник по электрическим установкам высокого напряжения / Под ред. И. А. Баумштейна. - 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1989. - 768 с.
6. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов / В.М. Блок, Г.К. Обушев, Л.Б. Паперко и др.; Под ред. В.М. Блок. – М.: Высш. школа, 1990. – 383 с.
7. Барченко Т.Н., Закиров Р.И., Электроснабжение промышленных предприятий. Учебное пособие к курсовому проекту, Томск, ТПИ, 1988. – 96 с.
8. Справочник по электроснабжению и электрооборудованию: В 2 т. Т.1. Электроснабжение / Под общ. Ред. А.А. Федорова. - М.: Энергоатомиздат, 1986. - 568 с.