Комплекс геофизических исследований скважин Самотлорского месторождения для оценки ФЕС и насыщения к...

Применяя уравнения 2.8, 2.9 к горной породе, допуская в ней только упругие деформации, можно вычислить сжимаемость породы β, решая уравнение 2.10, 2.11 при условии, что величины υ, E, δ известны из данных эксперимента или обобщенных сведений для различных классов горных пород. В дальнейшем основным объектом исследований при интерпретации данных АКШ становится параметр β, который, является источником информации о емкостных свойствах породы и составе флюидов, насыщающих породу.

Известно полученное теоретическим путем для модели породы, составляющие, которой ведут себя как идеально упругие однородные и изотропные среды, уравнение Ф.Гассмана:

                                                                            2.12


где βо, βcк, βтв,βж соответственно сжимаемости породы, скелета породы, твердой фазы и жидкости (флюида), заполняющие его поры.

Модель Ф.Гассмана не учитывает упругой связи между твердой и флюидальной компонентами, которая присутствует в реальных породах. Для преодоления этого недостатка В.М. Добрынин предложил уравнение:

                                                                       2.13

где μр- коэффициент, учитывающий влияние включений , присутствующих в реальных породах, на упругие характеристики породы.

Коэффициент упругой связи αсв твердой и флюидальной  фаз породы определяется выражением:                                                      

                                           ,           2.14



где βп - коэффициент сжимаемости пор.

На  основании  изложенного,   получено  уравнение  для  коэффициента  объемной сжимаемости породы βо при динамических нагрузках (динамическая сжимаемость):

                  2.15

для газонасыщенных терригенньгх коллекторов сжимаемость породы значительно
меньше сжимаемости флюида, поэтому , αсв=1     , поэтому уравнение 2.15

принимает вид:

    2.16

Для количественной интерпретации используется набор комплексных, параметров зависимость комплексного безразмерного параметра, названного «индексом динамической сжимаемости» (ИДС), от коэффициента водонасыщения пласта. ИДС характеризует соотношение сжимаемостей минералов, пор породы, нефти, газа и воды. Для его определения необходимо знать скорости (интервальные времена) продольных и поперечных волн, пористость и плотность изучаемых отложений.

Основой для расчета кривых служат широко известные теории деформации пористых тел М.Био и Ф.Гассмана, модифицированные В.М.Добрыниным применительно к определению нефтенасыщенности коллекторов. При этом были учтены важнейшие ограничения в применении этих теорий для практических целей.

Получены два семейства кривых для нефтегазонасыщенных пластов: кривые с параметром нефтенасыщенности, изменяющимся к пределах kн= 0-0,8 и кривые с параметром газонасыщенности - kг= 0-0,5.

Одна из кривых получена для условий нефтеводонасыщенного пласта без свободной газовой фазы (kг=0). Он имеет плавный характер и диапазон изменения ИДС достигает 70% при изменении коэффициента водонасыщения от предельной величины kв=kв.о до kв= 100%.

При наличии в порах небольшого количества свободного газа (kг = 0,02 -0,05) кривые для определения kв резко выполаживаются, т.к резко снижается дифференциация пласта по нефтенасыщению. Это делает затруднительным количественные определения нефтенасыщенности. При kг = 0,5 все семейства кривых ИДС =f(kв) устремляется к предельному значению, соответствующему отсутствию упругой связи между флюидом и твердой фазой породы. В этих случаях ИДС может лишь служить очень чувствительным индикатором присутствия свободного газа в нефтенасыщенном пласте.

3. Специальная часть

Информативность метода ВИКИЗ при изучении песчано-глинистых разрезов


3.1.  Основные геолого-геофизические задачи, решаемые методом ВИКИЗ

 

Метод высокочастотных индукционных каротажных изопараметрических зондирований предназначен для исследования пространственного распределения удельного электрического сопротивления пород, вскрытых скважинами, бурящимися на нефть и газ.

Использование метода ВИКИЗ позволяет решать следующие задачи ГИС:

—      расчленение разреза, в том числе тонкослоистого, с высоким пространственным разрешением;

—      оценка положения водонефтяных и газоводяных контактов;

—      определение удельного электрического сопротивления неизмененной части пласта, зоны проникновения фильтрата бурового раствора с оценкой глубины вытеснения пластовых флюидов;

—      выделение и оценка параметров радиальных неоднородностей в области проникновения, в том числе скоплений соленой пластовой воды («окаймляющие зоны»), как прямого качественного признака присутствия подвижных углеводородов в коллекторах.

В отличие от трехкатушечных зондов индукционного каротажа, в которых измеряются абсолютные значения сигналов на фоне скомпенсированного прямого поля, метод ВИКИЗ, базирующийся на измерении относительных фазовых характеристик, мо¬жет использоваться для исследования в скважинах, заполненных сильнопроводящим (УЭС менее 0,5 Ом-м) буровым раствором.

Результаты интерпретации диаграмм ВИКИЗ в комплексе с данными других ме¬тодов ГИС и петрофизической информацией позволяют определять коэффициент неф-тегазонасыщения, литологию терригенного разреза, оценивать неоднородность коллек-торских свойств на интервалах пористо-проницаемых пластов, выделять интервалы уплотненных песчаников с карбонатным или силикатным цементом и др.


3.2. Основы теории.   Сигналы ВИКИЗ в неородных средах

 О фокусирующих системах электромагнитного каротажа

Основная цель электромагнитного (в том числе индукционного) каротажа зак­лючается в возможно более точной оценке удельных электрических сопротивлений пластов. Для достижения этой цели применяются многокатушечные зонды. Параметры зондов выбираются таким образом, чтобы измеряемый сигнал в основном определял­ся УЭС неизмененной части пласта, а влияние скважины и зоны проникновения было относительно небольшим. Такого рода зонды в каротаже принято называть фо­кусирующими.

В индукционном каротаже (частоты до 250 кГц) для проектирования зондов ис­пользуются принципы частотной и геометрической фокусировки, базирующиеся на те­ории обобщенного геометрического фактора. При геометрической фокусировке момен­ты катушек и расстояния между ними подбираются таким образом, чтобы существенно уменьшить вклады (геометрические факторы) скважины и измененной проникновени­ем прискважинной области. Другим, менее распространенным способом фокусировки является измерение двухчастотной разности реальных частей э.д.с. или мнимой состав­ляющей э.д.с. Улучшение радиальных характеристик фокусирующих зондов приводит к увеличению влияния на сигнал вмещающих пород. Особенно это становится заметным, когда мощность пласта сравнима с длиной зонда. Другой особенностью фокусирующих систем является значительное уменьшение уровня измеряемого сигнала. Таким обра­зом, при их проектировании требуется найти компромисс между двумя альтернативны­ми условиями: для улучшения радиальных характеристик необходимо понижать частоту или увеличивать длину зонда, а для улучшения вертикальных характеристик и увеличе­ния измеряемого сигнала необходимо повышать частоту и укорачивать зонд. Все широ­ко используемые зонды индукционного каротажа (6Ф1, 6Ф1М, 8И1.4) спроектированы с учетом этих противоречивых требований.

Принципиально иным является принцип фокусировки переменного электромаг­нитного поля в области высоких частот. Было установлено, что относительная разность амплитуд или фаз, измеренных в двух близко расположенных катушках, очень слабо за­висит от параметров скважины даже на очень высоких частотах (до 15 МГц). Таким об­разом, измерение разности фаз позволяет выполнить сразу два требования: исключить влияние скважины, не утратив при этом хорошего вертикального разрешения. Приме­нение высоких частот приводит к высоким уровням сигналов даже в относительно плохо проводящей (до 120 Ом-м) среде, что расширяет диапазон определяемых удельных электрических сопротивлений.

Разность фаз и ее связь с удельным электрическим сопротивлением однородной изотропной среды. Кажущиеся сопротивления

В высокочастотных методах при измерении относительных характеристик ис­пользуются трехкатушечные зонды. Такой зонд состоит из одной генераторной (Г) и двух измерительных (Ир И2) катушек. Все катушки соосны. Измерительные элементы располагаются по одну сторону от генератора. Генераторная катушка питается перемен­ным гармоническим током

                                      J=J0e-iwt.

Здесь  wкруговая частота, J0— амплитуда, i =  √-1      — мнимая единица. Момент генера­торной катушки Mt определяется током, площадью витка S и количеством витков nt:

Mt = JntS.

Моменты измерительных катушек Мr определяются площадью витка и числом витков п:

Mr = nrS.

Расстояние между центрами генераторной и дальней измерительной И1 катушек называется длиной зонда L1. Относительное расстояние между центрами измеритель­ных катушек  )L\L1 называют базой зонда.

Переменный ток в генераторной катушке возбуждает в однородной проводящей среде переменное электромагнитное поле. Если расстояния между генераторной и из­мерительными катушками существенно превышает их размер (L » √/S ), все катушки можно заменить магнитными диполями. В этом случае магнитное поле в центрах изме­рительных катушек описывается выражением:

Здесь kволновое число, которое связано с параметрами среды следующим соотноше­нием:

                                                                                                                                

В j-й измерительной катушке наводится э.д.с.

Фаза магнитного поля или э.д.с. в измерительной катушке описывается выраже­нием

Эта зависимость является базовой для проектирования изопараметрических зондов. Из представленного выражения видно, что разность фаз в однородной среде будет одинакова и зависит только от УЭС среды, если выполняются два условия:

Трехкатушечные зонды, для которых выполняются эти условия, называются изопараметрическими.

В аппаратуре ВИКИЗ выбраны следующие значения изопараметров:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать