Конструкция, методика расчёта конверторов цветной металлургии

7) Размеры горловины

Сечение Головины выбранного конвертора Fгорл, м2 проверяют по действительной скорости газов в горловине ωt, м/сек, и количеству отходящих из конвертора газов vt, м3/сек:

Практикой установлено, что для нормальной работы конверторов значение ωt≤8 – 12 сек. Величина vt определяется по данным технологического расчета по уравнению

  (5)

Здесь  - удельное количество газов на 1 т штейна, нм3/т;

t – температура отходящих газов;

86400 – число секунд в сутках.

8) Параметры воздуходувной машины и расчет воздухопроводов.

Производительность воздуходувной машины Vвозд , нм3/мин, рассчитывают из условия обеспечения подвода к фурмам конвертора воздуха в количестве

Vконв, нм3/мин, и восполнение потерь воздуха на возможных неплотностях воздухоподводящей трассы, которые по данным практики составляют 10 – 25% от Vконв. Следовательно, производительность воздуходувки

Vвозд=(1,10÷1,25) Vконв нм3/мин. (6)

Давление дутья, создаваемое воздуходувкой pвозд , кг/см3, должно на

10 – 20%  превышать давление на коллекторе p1:

pвозд=(1,10÷1,20) p1 кг/см2 (7)

Диаметр воздухопроводов d, м  определяют по максимальному секундному объему воздуха, проходящего по воздухопроводу Vtp м3/сек, и действительной его скорости ωtp, м/сек, по формуле:

Действительная скорость  воздуха в конверторных воздухопроводах принимается обычно равной 15 – 25 м/сек.

Пример расчета конвертора.

1. Пропускная способность конвертора по воздуху

На основании сводного материального баланса (таблица 144) [1] находим теоретическое удельное количество воздуха на 1т штейна:

Приняв по данным практики коэффициент использования конвертора под дутьем k=0,7, найдем потребную пропускную способность конвертора по формуле (1):

2. Удельная нагрузка фурм конвертора.

Находится по формуле (2):

Примем на основании данных заводской практики давление воздуха на коллекторе p1=1,2 кг/см2, противодавление ванны  Hгидр=0,3 кг/см2, значение показателя гидравлического сопротивления применяемой в настоящее время воздухоподводящей системы конвертора С=0,6:

3. Площадь сечения работающих фурм

4. Число работающих фурм

Приняв на основании практических данных диаметр фурменных трубок d=41мм, получим по формуле (3) необходимое число одновременно работающих фурм:

5. Число установленных фурм

С учетом резерва 20% число установленных фурм по формуле (4):

nуст=1,2 np=1,2·29=35

6. Тип и размеры конвертора

Исходя из найденных значений площади сечения фурм =375 см2; диаметр фурмы d=41мм и числа фурм nуст=35, по табл.1 выбираем стандартный горизонтальный конвертор с размерами по кожуху 3,6×6,1 м и емкостью по файнштейну 40т.

7. Расчет эффективности применения фурм усовершенствованной конструкции

Как выявлено в результате исследований лаборатории печей Ленинградского горного института, имеется возможность существенно увеличить пропускную способность фурм в результате усовершенствования конструкции воздухораспределительной системы конвертора, Предложена конструкция, имеющая показатель гидравлического сопротивления С=3.

Определим по формуле (2) удельную нагрузку фурм при использовании усовершенствованной конструкции воздухораспределительной системы.

Тогда суммарное рабочее сечение фурм составит

=

Рабочее число фурм

np=127·

Установленное число фурм

nуст=1,2·20=24

Таким образом, при использовании усовершенствованной конструкции воздухораспределительной системы заданную производительность конвертора можно обеспечит при меньшем числе фурм. В результате облегчится обслуживание конвертора и улучшатся условия службы огнеупорной кладки, Если же сохранить рассчитанной выше число фурм nуст=35, то использование усовершенствованной конструкции воздухораспределительной системы позволит увеличить производительность конвертора на единицу времени дутья пропорционально повышению удельной пропускной способности фурм, т.е на

8. Определение числа операций

При определении числа операций следует ориентироваться не на количество файнштейна, а на количество обогащенной массы, накапливаемой в конвертере за период набора.

При заданной производительности конвертора 210 т/сутки по горячему и холодному штейну обогащенной массы будет получено

Емкость конвертора по файнштейну и по массе будет примерно одинакова, поскольку удельные веса этих продуктов разнятся незначительно.

При этих условиях число операций число операций в сутки составляет

9. Проверка размера горловины

По формуле (5) для суточной производительности А=210 т/сутки при коэффициенте использования конвертора под дутьем k=0,7 секундное количество газов при t=10000

Общее удельное количество газов получено снижением количества газов по отдельным периодам операции переработки штейна (см. табл. 137, 139, 142) [1] и делением суммы на 0,014

Выбор стандартного конвертора

Fгорл=1,7·1,9=3,23м2

Скорость газов в сечении горловины

Поскольку скорость газов находится в пределах, допускаемых практикой, стандартные размеры горловины приемлемы и не нуждаются в изменениях.


3.1 Тепловой баланс конвертора


Исходными данными для расчета теплового баланса конвертора являются материальные балансы по периодам (см. табл. 141 и 143), [1] тепловые эффекты реакций (см. табл. 136), [1] температуры и теплоемкости материалов и продуктов (см. табл. 2).

Таблица 2 - Температуры и теплоемкости материалов и продуктов процесса конвертирования никелевых штейнов

Материалы

Температура,  0С

Теплоемкость

Ккал/кг· 0С

В период набора

В период варки файнштейна

Горячий штейн………………………..

Воздух…………………………………

Обогащенная масса…………………..

Шлаки………………………………....

Газы…………………………………....

Файнштейн…………………………….

Внутренняя полость конвертора……..

Наружная поверхность кожуха конвертора……………………………..

1000

60

1250

1250

1000

-

1250


200

-

60

1250

1350

1200

1350

1350


300

0,2

-

0,2

0,3

-

0,2

-


-


Балансовое время, т.е время переработки 140 кг штейна, находится из суточной производительности:

Время периода набора и периода варки файнштейна находится из соотношения количества воздуха, подаваемого в соответствующий период:

В период набора воздуха израсходовано………………161,74 кг…..74%

В период варки файнштейна…………………………….58,30………26%

Итого.220,04 кг100%

Отсюда

τ1=0,74 τ=0,74·0,016=0,012 часа

τ2=0,26 τ=0,26·0,016=0,004 часа

А. Тепловой баланс периода набора

Приход тепла

1. Тепло горячего штейна:

Qшт=Gшт·сшт·tшт

Qшт=100·0,2·1000=20000 ккал

2. Тепло воздуха

Qв=Vв·св·tв

Из табл. 141 [1] находим объем воздуха, израсходованного за период набора:

Qв=125·0,31·60=2330ккал.

3. Тепло окисления железа ферроникеля.

По реакции (1) [1] окисляется до Fe3O4 7,72 кг Fe:

Q’=7,72·1590=12300 ккал.

По реакции (2) [1] окисляется до FeO и шлакуется кремнеземом 45,7 кг Fe:

Q”=45,7·1244=57000 ккал.

Всего от окисления железа ферроникеля с учетом тепла шлакообразования

QFe=69300 ккал.

4. тепло окисления сернистого железа.

По реакции (3) [1] окислителя до Fe3O4 3,2 кг Fe:

Q’=3,2 ·2451=7850 ккал.

По реакции (4) [1] окисляется до FeO и шлакуется кремнеземом 18,9 кг Fe

Q”=18,9·2105=39900 ккал.

Всего от окисления сернистого железа с учетом тепла шлакообразования

QFeS=47750 ккал.

Всего приход тепла составляет

20000+2330+69300+47750=139380 ккал.

Расход тепла

1. Тепло обогащенной массы

Qм=Gм·см·tм

Qм=61,84·0,2·1250=15500 ккал.

2. Тепло шлака

Qшл=Gшл·сшл·tшл

шл=194,64·0,3·1250=73200 ккал.

3. Тепло газов

Qгаз=(VSO2·cSO2+VN2·cN2+VO2·cO2)tгаз=(8,85·0,536+99,8·0,334+1,33·0,353)1000=

=38500 ккал.

4. Потери тепла во внешнюю среду:

а) потеря тепла поверхностью кожуха

Qкож=q·Fкож·τ1

где q – удельный тепловой поток, ккал/м2·час, находится по графику (см. рис. 5) [1];

Fкож – общая теплоотдающая поверхность кожуха конвертора с учетом ребристости, м2.

Геометрический размер поверхности цилиндра размером 3,6×6,1 за вычетом поверхности горловины составляет

F=3,14·3,6(1,8+6,1)-3,2=(88-3,2)≈85м2

Приняв коэффициент ребристости К=1,3 получим

Fкож=85·1,3=110 м2

По графику (см. рис. 5) [1] для tкож=2000 находим

q=3500ккал/м2·час, откуда

Qкож=3500·110·0,012=4600 ккал.

б) Потеря тепла излучением через горловину размером 3,2 м2

Qгорл=q·Fгорл·τ1

где q – удельный тепловой поток, излучаемый открытым отверстием, ккал/м2·час, находится по графику рис.36.

Приняв коэффициент диафрагмирования с учетом частичного прикрывания горловины напыльником Ф=0,7 для t =12500 по графику (см. рис. 36) [1] , находим q=180000 ккал/м2·час, откуда

Qгорл=180000·3,2·0,012=6900 ккал.

Всего потери тепла во внешнюю среду составляют

4600+6900=11500 ккал.

Расход всего тепла

15500+73200+38500+11500=138700 ккал.

По разности прихода и расхода неучтенные потери и невязка баланса

139380-138700=680 ккал.

Результаты расчетов теплового баланса периода набора сведены в табл.

 Тепловой баланс периода варки файнштейна

Приход тепла

1. Тепло обогащенной массы (сохраняется от периода набора) 15500 ккал.

Таблица 3 - Тепловой баланс периода набора

Приход тепла

Расход тепла

Статьи прихода

ккал

%

Статьи расхода

ккал

%

1


2

3


3

Тепло горячего штейна……………

Тепло воздуха……

Тепло окисления железа ферроникеля……..

Тепло окисления и ошлакования сернистого железа.



20000

2330



69300



47750


14,4

1,6



49,7



34,3

1



2

3

4


5


Тепло обогащенной массы…..

Тепло шлаков…

Тепло газов……

Потери на внешнюю среду…

Неучтенные потери и невязка баланса



15500

73200

3850


11500


680



11,1

52,1

27,6


8,3


0,5


Всего …….............

139380

100,0


Всего………………

139380

100,0


2. Тепло воздуха:

Из табл. 143 [1]

Qв=45·0,31·60=840 ккал.

3. Тепло окисления сернистого железа.

По реакции (3) окисляется до Fe3O4 2,12 кг Fe:

Q’=2,12·2451=5200 ккал.

По реакции (4) окисляется до FeO и шлакуется кремнеземом

12,51 кг Fe:

Q”=12,51·2105=26400 ккал.

Всего от окисления сернистого железа выделяется тепла

QFeS=5200+26400=31600 ккал.

Всего приход тепла

15500+840+31600=479400 ккал.

Расход тепла

1. Тепло файнштейна

QФ=GФ·сФ·tФ

QФ=33,8·0,2·1350=9150 ккал.

2. Тепло шлака

Qшл=32,71·0,3·1350=13200 ккал.

3. Тепло газов (количество газов из табл. 143)

Qгаз=(5,87·0,546+36·0,340+0,45·0,359)1200=18100 ккал.

4. Потери тепла во внешнюю среду:

а) кожухом конвертора:

Qкож=qFкож·τ2

По графику (см. рис. 5) [1] для tкож=3000, q=7000 ккал/м2·час

Qкож=7000·110·0,004=3100 ккал;

б) излучение горловиной

Qгорл=qFгорл·τ2

По графику для (см. рис. 36) [1] t=1350; Ф=0,7 находим q=230000ккал/м2·час

Qгорл=230000·3,2·0,004=2950 ккал.

Всего потери во внешнюю среду

3100+2950=6050 ккал.

Всего расход тепла

9150+13200+18100+6050=46500 ккал.

По разности прихода и расхода тепла неучтенные потери и невязка баланса составляют

47940-46500=1440 ккал.

Результаты расчетов теплового баланса периода варки файнштейна сведены в табл. 4

Таблица 4 - Тепловой баланс периода варки файнштейна

Приход тепла

Расход тепла

Статьи прихода

ккал

%

Статьи расхода

ккал

%

1


2

3

Тепло обогащенной массы………………

Тепло воздуха……..

Тепло окисления и ошлакования сернистого железа...


15500

840



31600


32,3

1,9



65,8

1

2

3

4


5

Тепло файнштейна.

Тепло шлака………

Тепло газов………..

Потери во внешнюю среду…..

Неучтенные потери и невязка…………..

3150

13200

18100


6050


1440


19,2

27,5

38,0

12,6


2,7


Всего

47940

100,0


Всего

47940

100,0

Для общей оценки тепловой работы конвертора составлен также свободный тепловой баланс процесса (табл. 5).


Таблица 5 - Свободный тепловой баланс процесса переработки никелевого штейна на Файнштейн

Приход тепла

Расход тепла

Статьи прихода

ккал

%

Статьи расхода

ккал

%

1


2

3



4


Тепло обогащенной массы……………

Тепло воздуха………

Тепло окисления и ошлакования железа ферроникеля………

Тепло окисления и ошлакования сернистого железа….


20000

3170



69300



79350


11,6

1,8



40,3



46,3

1

2

3

4


5

Тепло файнштейна

Тепло шлака……...

Тепло газов………

Потери во внешнюю среду….

Неучтенные потери и невязка…

9150

86400

56600


17550


2120

5,3

50,3

33,0


10,2


1,2


Всего………………..

171820

100,0


Всего……………...

171820

100,0

Заключение

К основным достоинствам конвертирования можно отнести : автогенный характер протекания процесса, возможность переработки большой массы скрапа и холодных присадок, высокое содержание сернистого ангидрида в технологических газах, позволяющее направлять их на производство серной кислоты.

Недостатками являются: плохой отстой шлаков и связанное с ним пониженное прямое извлечение металлов, загрязнение атмосферы выбивающимися из поднапольника технологическими газами, периодичность работы и необходимость прочистки фурм.

Один из основных недостатков – загрязнение воздушного бассейна технологическими газами может быть полностью ликвидировано с применением конвертора  с боковым отводом газов.

Список использованных источников

1 Расчеты пиропроцессов и печей цветной металлургии. Под научной редакцией Д.А Диомедовского, Л.М Шалыгина, А.А Галинберк, И.А Южанин. – М.: Металлургия, 1963. – 640 с.

2 Кривандин В.А. Металлургическая теплотехника – 2 том / В.А. Кривандин; профессор, доктор техн. наук. – М.: Металлургия, 1986. – 590 с.

3 Басов А.И. Механическое оборудование обогатительных фабрик и заводов тяжелых цветных металлов. – М.: Металлургия, 1987. – 578 с.


Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать