Вертикальное конвейерное сушило (рис. 7) выполняется в виде башни со стенами рамно-щитовой конструкции. Пространство между внутренним и внешним стальными листами обшивки рам заполняется теплоизоляционным материалом (шлаковой или стеклянной ватой). Внутри сушила движется вертикальный конвейер, состоящий из двух непрерывных роликовых цепей с подвешенными на них этажерками. На полки этажерок укладывают подвергаемые сушке стержни. Количество полок на каждой из этажерок зависит от размера стержней. При массе стержней до 5 кг обычно на этажерке устанавливают по три полки, при сушке более крупных стержней количество полок уменьшается. Изменяя скорость движения конвейера, можно устанавливать различное время пребывания стержней в сушиле в зависимости от их массы. Загрузка стержней производится со стороны восходящей ветви конвейера, разгрузка — с противоположной стороны, причем загрузка и выгрузка обычно механизированы.
|
1 – рабочее пространство сушила; 2 – привод; 3 – цепь конвейера; 4 – продольная перегородка; 5 – ведущее колесо; 6 – дымовая труба
Рисунок 7 – Вертикальное конвейерное сушило
Топка сушила находится между двумя ветвями конвейера; размещена выше уровня загрузочного и разгрузочного окон, чтобы предотвратить выбивание горячих дымовых газон. Топливо сжигается. б топке, расположенной внутри смесительной камеры, в которой происходит перемешивание выходящих из топки продуктов горения (с температурой 1000—1200° С) с холодным воздухом или отработанными газами. Наружная камера одновременно играет роль тепловой изоляции кладки топки. Приготовленный таким образом сушильный агент выходит из камеры смешения через отверстия в ее своде и поступает в сушильную камеру со стороны восходящей ветви конвейера. Поднявшись в верхнюю часть сушила, дымовые газы огибают перегородку, опускаются в нижнюю часть сушила, откуда дымососом часть их отводится для рециркуляции, а часть поступает в дымовую трубу. Вместо сплошной перегородки часто используются газоотбойные щиты, устанавливаемые над топкой. Меняя угол наклона этих щитов при помощи лебедки, можно регулировать распределение газовых потоков в сушильной камере. Помимо этого, дымовая труба соединена с верхней частью сушильной камеры четырьмя короткими трубопроводами с заслонками на каждом из них. Все эти средства позволяют регулировать работу сушила и подбирать тот режим сушки, который требуется для данных стержней.
Стержни перед выдачей из сушила охлаждаются. Зоной охлаждения служит участок нисходящей ветви конвейера между дымоотборным отверстием и разгрузочным окном. Охлаждение стержней осуществляется воздухом, подсасываемым в сушильную камеру через окно разгрузки.
Технические характеристики типовых вертикальных сушил, разработанных институтом «Теплопроект», приведены ниже:
Производительность сушила, кг/ч 800 1300 1750 2500
влаги, кг/ч 42 68 92 131
Расход тепла на удале-ние 1 кг влаги, кДж/кг . 26700 21000 19600 18000 Общее число этажерок в сушиле 18 26 28 35
Горизонтальное конвейерное сушило (рис. 8) представляет собой теплоизолированный коридор. Внутри коридора перемещается цепной конвейер, который делает несколько поворотов в горизонтальной плоскости. К цепи конвейера подвешены этажерки, на которые укладывают влажные стержни. Торцы сушила остаются открытыми
1 – топка; 2 – вентилятор подачи дымовых газов в сушильное пространство; 3 – вентилятор откоса отработанных газов из сушила; 4 – трубопровод дымовых газов; 5 – короба подачи дымовых газов в сушильное пространство; 6 – трубопроводы подачи охлаждающего воздуха; 7 – дымовая труба; 8 – дымосос; 9 – натяжное устройство конвейера; 10 –звездочка привода конвейера; 11 – вентилятор подачи охлаждающего воздуха; 12 – трасса конвейера; 13 – отверстия с задвижками для выхода газов в сушильное пространство
Рисунок 9 – Четырехходовое горизонтальное конвейерное сушило
(для входа и выхода непрерывно движущегося конвейера). Чтобы избежать попадания горячих газов на рабочую площадку, сушило поднято над уровнем пола цеха на высоту около 2 м и конвейер входит в него наклонно. Сушильная камера выполняется сборной из отдельных панелей с теплоизоляционной прокладкой. В качестве теплоизоляции служит шлаковая или стеклянная вата. Сборка каркаса с панелями осуществляется па болтах что допускает легкую смену панелей. Часть потолочных панелей не крепится болтами, а лежит свободно и играет роль предохранительного клапана на случай взрыва в рабочем пространстве.
Топка в таких сушилах вынесена из рабочей камеры и дымовые газы подаются вентилятором по металлическому дымоходу. Продукты горения поступают в короба, расположенные па полу сушила, Поступление сушильного агента в рабочее пространство регулируется задвижками. Отработанные дымовые газы отбираются из предпоследнего и последнего коридоров и используются для рециркуляции. Последний ход сушила играет роль зоны охлаждения. В него подается атмосферный воздух для охлаждения стержней перед выходом из сушила. Часть топочных газов, смешанных с воздухом в зоне охлаждения, отсасывается вентилятором и выбрасывается в атмосферу. Наличие вынесенной топки и принудительной подачи сушильного агента позволяет легко регулировать требуемый режим сушки по всему рабочему пространству. Производительность горизонтальных конвейерных сушил 2000—3000 кг/ч при количестве испаряемой влаги до 140—160 кг/ч и расходе тепла на 1 кг удаляемой влаги 14500—19500 кДж/кг.
Отопление всех описанных сушильных установок может осуществляться любым видом топлива (твердым, жидким или газообразным), сжигание которого осуществляется с помощью топливосжигательных устройств.
3 Расчет процессов сушки
Расчет процесса сушки производится для нахождения необходимого для нормальной работы сушила количества сушильного агента и определения расхода тепла (топлива). Тип сушила, характеристики высушиваемого материала и вид топлива обычно бывают заданы. Режим сушки выбирают, исходя из технологических соображений и вида форм и стержней.
При такой постановке задачи расчет сводится к совместному рассмотрению балансов влаги и тепла при процессе сушки. Очевидно, что вся влага, удаляемая из материала при сушке, переходит к сушильному агенту, повышая влагосодержание последнего от начального dнач (на выходе в сушило) до конечного dкон (на выходе из сушила). Тогда, исходя из закона постоянства массы:
mвл = L(dкон –dнач) кг, (1)
где L — количество сухого сушильного агента, кг сухого газа (возд).
Количество необходимого сухого сушильного агента удобно выразить, отнеся его к 1 кг удаляемой из высушиваемого материала влаги:
l=L/ mвл =1/ dкон –dнач кг/кг исп. вл. (2)
Все последующие операции по совместному анализу балансов тепла и массы для процесса сушки могут быть наиболее эффективно осуществлены с помощью I—d диаграммы, подробно описанной в гл. II первого тома учебника. Основными параметрами I—d диаграммы служат энтальпия I (кДж/кг) и влагосодержание d (кг/кг сух. возд). Диаграмма I—d построена для влажного воздуха, однако с ее помощью можно производить расчеты сушки не только воздухом, но и дымовыми газами, а также смесью дымовых газов с воздухом.
При расчете процессов сушки с помощью I—d диаграммы следует последовательно отображать на ней имеющие место в сушиле явления: подготовку сушильного агента перед его подачей в рабочую камеру (т. е. подогрев воздуха в случае использования воздуха в качестве сушильного агента); смешение продуктов горения с воздухом или возвратом в случае сушки дымовыми газами и собственно процесс сушки.
Ниже рассмотрен порядок отображения на I—d диаграмме процессов сушки различными сушильными агентами. Это отображение будет в дальнейшем называться «построение процесса сушки».
Сушка воздухом. Для построения на I—d диаграмме процесса сушки воздухом предварительно определяют его начальные параметры φвоз и Твоз в зависимости от времени года и местности. По этим данным на диаграмме находят точку А (рис. 10). Для осуществления процесса сушки воздух необходимо подогреть до температуры Тнач (температура воздуха на входе в сушильную камеру). Эту температуру принимают на 150—250° С выше рекомендуемой технологией температуры сушки, поскольку указанная разность температур между сушильным агентом и поверхностью сушимых изделий характерна для значительного большинства сушил с теплопередачей преимущественно конвекцией. Эта разность температур и создает необходимый для процесса сушки тепловой поток к высушиваемой поверхности. Процесс подогрева на диаграмме изображается прямой линией АВ, параллельной линиям постоянного влагосодержания d=const, так как при подогреве начальное влагосодержание воздуха остается неизменным, а изменяется только его энтальпия. Точка В характеризуется параметрами dнач = dвоз, Тнач, Iнач.
В процессе сушки влагосодержание воздуха и его температура изменяются. Влагосодержание воздуха возрастает за счет удаления влаги из материала, а его температура снижается до величины Ткон вследствие затраты тепла на процесс сушки. Температура Ткон соответствует моменту выхода сушильного агента из сушильной камеры. Эту температуру принимают равной рекомендуемой (по технологическим условиям) температуре сушки или величине несколько меньшей в случае, если садка загружается в холодную камеру, и тогда учитывается средняя за период температура уходящих газов. (Во всех случаях выбирать параметры процесса сушки ниже линии относительной влажности φ=100% нельзя, так как насыщенный пар частично конденсируется и влага оседает на высушиваемых изделиях, что резко ухудшает качество форм и стержней.)
Если в процессе сушки все вводимое в сушило тепло расходуется исключительно па удаление влаги из материала, то происходит так называемый теоретический процесс сушки, который протекает при постоянной энтальпии сушильного агента. На I—d диаграмме он изображен прямой линией ВС', параллельной линиям постоянной энтальпии I== const до пересечения в точке С' с изотермой Ткон =const. Энтальпия сушильного агента (в данном случае воздуха) при теоретическом процессе сушки остается постоянной, поскольку тепло, затраченное на испарение влаги, возвращается воздуху с водяными парами, несущими в себе скрытую теплоту парообразования.