Контроль за наведенным напряжением


 








В ходе разработки устройства проведены исследования зависимости максимального выходного напряжения и потребляемого тока от частоты и скважности импульсов высокочастотного генератора (позиция 2 рисунка 10) при различных значениях напряжения питания. Эти исследования проводились с помощью упоминавшейся в предыдущих статьях установки для проведе­ния исследований по применению ультразвука, которая являлась одно­временно источником (ВЧ генератором) и измеряющим вольтметром.

Проведя исследование принципов работы ППУ других производителей (УПУН-1 и УПУВН-1), можно с уверенностью сказать, что они не обеспечивают эквивалентных испытаний УН по отношению к реальной ВЛ.

Таким образом, на практике следует ограничить применение ППУ, - которые не могут обеспечить условий проверки эквивалентных реальным, поскольку это может привести к трагическим последствиям в связи с ошибочной индикацией об отсутствии напряжения на ВЛ или других электроустановках.


СИГНАЛИЗАТОРЫ НАПРЯЖЕНИЯ ДЛЯ ВОЗДУШНЫХ ЛЭП.

СИСТЕМЫ СИГНАЛИЗАЦИИ ДЛЯ УСТРОЙСТВ КОНТРОЛЯ НАЛИЧИЯ НАПРЯЖЕНИЯ.


Для предварительного выявления отсутствия или наличия напряжения возможно применение УН бесконтактного типа, а также некоторых видов сигнализаторов напряжения (СН), достоинством которых является то, что они позволяют провести проверку без подъема на опору, с земли.

Получение информации о наличии напряжения на токоведущих частях электроустановок производится с помощью контактных указателей и бес­контактных сигнализаторов (индикаторов) напряжения. Информация о на­личии и уровне напряжения обычно передается оператору с помощью све­товых и (или) звуковых сигналов опасности, которые обладают различной степенью быстроты и надежности восприятия. Постоянный рост требова­ний надежности восприятия требует новых подходов к задаче выбора и размещения средств отображения информации (индикаторов).

Существуют стандарты, устанавливающие критерии по восприятию световых, звуковых и тактильных сигналов опасности для того, чтобы лю­ди могли опознать эти сигналы и реагировать на них. При создании новых приборов необходимо обеспечить согласование их систем сигналов с су­ществующими стандартами для того, чтобы избежать противоречий и воз­никновения риска неправильной интерпретации.

Сигналы опасности, вырабатываемые средствами измерения и сигнали­зации, должны быть эффективными при всех условиях их использования, включая условия возникновения помех процессу распознавания со сторо­ны окружающей среды. В качестве помех можно рассматривать фоновые оптические и звуковые источники, препятствующие восприятию информа­ционного сигнала. Степень влияния помех зависит от разных факторов, та­ких как расстояние от источника сигнала, направленность излучения, фи­зических свойств среды и т.д.

В настоящее время в зависимости от требований, выдвигаемых к инди­кации, применяются оптические, акустические и тактильные индикаторы. В качестве основных видов индикации чаще всего используют первые два типа индикаторов, обладающих своими достоинствами.

Основная особенность акустических индикаторов заключается в том, что они позволяют получать информацию, в то время когда оператор занят выполнением других задач. Это повышает эффективность при необходи­мости двигаться и быстро реагировать на изменения измеряемой величины (например, превышение заданного порога). Учитывая особенности челове­ческого слуха предпочтительнее всего выбирать частоты в диапазоне от 500 до 3000Гц. В зависимости от степени опасности звуковые сигналы мо­гут иметь разную временную и частотную модель, что позволяет четко разграничивать аварийный сигнал от предупреждающего сигнала. На практике рекомендуется использовать не более двух различных длин волн с соотношением не менее 1:3, а также периодически повторяющиеся груп­пы импульсов с продолжительностью периода от 0,25 до 0,125 с.

При необходимости индицировать большое число состояний можно использовать акустические индикаторы с речевой информацией. Данный вариант более гибкий и легко интерпретируемый, но обладает меньшей помехоустойчивостью по сравнению с обычными звуковыми сигналами.

Оптические индикаторы по сравнению с акустическими индикаторами позволяют передавать большие объемы информации и меньше влиять на показания других приборов. Более высокие требования, предъявляемые к расположению оптических индикаторов относительно поля зрения оператора, снижают пространство приема сигнала и приводят к снижению опе­ративности реакции. На рисунке 6 приведены области пригодности сигна­ла относительно оси зрения 8 в случае нормального зрения оператора. Приведенные углы носят рекомендательный характер и могут манятся, на­пример при восприятии красок они сужаются.

зоº

 

Рисунок 6. Обнаружение сигнала в вертикальном поле зрения


Узнаваемость сигнала может дополнительно обеспечиваться комбина­цией таких характеристик, как: яркость, цвет, пространственное располо­жение, эффект мигания.

Улучшение восприятия опасной ситуации и снижение остроты внима­ния оператора можно получить, применяя комбинированную индикацию. Например, синхронная подача звуковых и световых сигналов расширяет возможности использования приборов в различных условиях.

В случаях затруднения восприятия оптической и звуковой информа­ции необходимо передавать или дублировать данные тактильным спосо­бом, например вибрацией, пропорциональной уровню измеряемой величи­ны. Высокой чувствительностью к тактильным индикаторам обладают ру­ки, но следует учитывать случаи, когда необходимо применять перчатки, заметно снижающие надежность восприятия тактильного сигнала.                           

С появлением индивидуальных сигнализаторов напряжения стало возможным контролировать уровень напряжения с земли, что позволило лишний раз не рисковать своей жизнью.

Перед ними не стоит задача определения с заданной точностью значения контролируемой величины. Это обстоятельство позволяет упростить их конструкцию, повысить удобство эксплуатации и надежность.

Необходимость применения при работе на электро­установках устройств контроля наличия напряжения подтверждается материалами расследований несчастных случаев, происшедших в электроэнергетике. Анализ материалов по электротравматизму показывает, что наибольшее число травм связано с тем, что не было проверено наличие напряжения. Распространенной причиной является также нарушение безопасного расстояния. Установлено, в частности, что в электричес­ких сетях РАО "ЕЭС России" в девяти случаях в 2000 г. и в десяти - в 2001 г. можно было предот­вратить смертельные электротравмы при нали­чии у пострадавшего сигнализаторов напряжения (для сравнения, общее количество смертельных электротравм в РАО в 2000 г. - 34, в 2001 - 28). Причинами, по которым не было проверено наличие напряжения, являются: отсутствие необходимых приборов, их неисправность или неприменение. Помимо низкой производственной дисциплины, осознанное неприменение элек­трозащитных средств объясняется тем, что имеющееся оборудование неудобно в эксплуата­ции, громоздко и морально устарело.

Многолетняя статистика производственного травма­тизма в электроэнергетике дает стабильное соотношение между числом смертельных травм и общим травматиз­мом. Так, в случаях механического травмирования человека летальным исходом заканчивается приблизи­тельно один случай из тридцати. Но при попадании человека под напряжение смертью пострадавшего заканчивается каждый второй несчастный случай, что объясняется, помимо физиологической несовместимости электрического тока и биологических процессов в организме человека, отсутствием внешних признаков опасности оголенных токоведущих частей или металли­ческих конструкций, случайно оказавшихся под напря­жением (отсутствуют свечение, звук, дым и другие устрашающие признаки). Генерируемые СН тревожные сигналы предупреждают человека, "озвучивают" для него опасность, исходящую от находящегося под напряжением оборудования, что способствует повыше­нию внимания, ведет к более взвешенным действиям.

Начавшееся в последние годы широкое применение на эксплуатирующих энергопредприятиях новых, более совершенных УН и СН способствовало в существенной степени снижению электротравма­тизма, в том числе и смертельного. Помимо высоких технических характеристик новые УН и СН должны быть надежны, просты и удобны в эксплуатации, иметь малую массу, привлекательный внешний вид. Для достижения этих целей необходимо использовать новую элементную базу, схемные решения, применять самые совершенные технологии изготовле­ния.

Контроль отсутствия напряжения на проводах воздушных линиях электропередачи (ВЛЭП) можно осуществлять с помощью индивидуальных сигнализаторов напряжения (СН), располагаемых на спецодежде. Они подают сигнал в случае внезапного появления напряжения на отключенных участках ВЛЭП. Различ­ные конструкции СН такого типа разработаны для крепления на каске, в нагрудном кармане, на запястье руки и т.д., они должны находиться во включенном состоянии все время работы. В зависимости от применения СН можно разделить на сигнализаторы напряжения ручные (СНР), предназначенные для определения наличия напряжения без подъема на опору, и на сигнализаторы напряжения касочные (СНК), предназначенные для сигнализации о приближении к источнику опасного напряжения (провод ВЛЭП) на расстояние менее допустимого.

Основное назначение СНР - кратковременное тестирование наличия напряжения непосредственно с земли. Высокая чувствительность, большие потребления не позволяют использовать СНР для постоянного контроля, поэтому для этих целей применяются СНК.

Анализ существующих конструкций выявил ряд недостатков, снижающих надежность срабатывания и удобство эксплуатации СН. Так, различные требования к емкости и габаритам источника питания (вызванные различием в условиях эксплуатации СН) приводят к использованию разных элементов. В СНК размеры источника питания играют существенную роль (обычно применяются миниатюрные дорогостоящие химические источники тока), в то время как в СНР нет подобных ограничений. Попытки использовать нехимические источники тока (тем самым продлить срок эксплуатации без обслуживания), такие как солнечная батарея и динамо-машина ("Пион-2001", рисунок 7) снижают удобство и надежность эксплуатации. Применение аккумуляторов и конденсаторов увеличивает риск использования прибора с разряженным источником питания.

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать