Корреляционно-регрессионный анализ

Поскольку d>2 то альтернатива отсутствию автокорреляции будет существование отрицательной автокорреляции. По  таблице находим для n=27, k=2 (число объясняющих переменных) и уровня значимости a=0,05 : d1=1.24 и d2 = 1.56 Т.к.

 4 – d= 1.809 > d2=1.56 следовательно автокорреляции нет.

5.    Устранение автокорреляции 1 – го порядка  обобщенным методом наименьших квадратов.

Наша цель- построить ковариационную матрицу вектора регрессионных остатков, найти ее оценку и построить модель ОМНК. Исследуем случайные величины :

       М= М=0

       D=, т.е. дисперсия регрессионных остатков постоянная величина.

       =

    Таким образом, указали вид ковариационной матрицы вектора регрессионных остатков. Для оценки коэффициентов регрессии ОМНК необходимо построить матрицу. Используя вид можно указать .

   

    На практике величина  неизвестна. Рассмотрим способом оценивания с помощью метода Кокрейна-Оркатта, который представляет собой итерационный подход, включающий следующие этапы:

6.     Оценивается регрессия МНК: У=Х;

7.     Вычисляются остатки e;

8.     Оценивается регрессионная зависимость еот е: е=, коэффициент при е представляет оценку ,

9.     Строится . Используя эту матрицу оцениваем регрессионную зависимость У от Х ОМНК.

10. Повторно вычисляют епроцесс возвращается к пункту 3.

Процесс заканчивается, когда значения на последнем и предпоследнем этапах будут примерно одинаковыми.

      Таким образом указан один из способов построения матрицы , в случае зависимости регрессионных остатков первого порядка. Используя матрицу  можно построить вектор оценок коэффициентов регрессии ОМНК, проверить на значимость уравнение регрессии, построить доверительные интервалы по вышеописанным формулам.

 Поскольку автокорреляции нет, то нет необходимости применения ОМНК.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приложение 1

Исходные данные *

№ п/п

Y1

X5

X7

X10

X14

X17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

9.26

9.38

12.11

10.81

9.35

9.87

8.17

9.12

5.88

6.30

6.22

5.49

6.50

6.61

4.32

7.37

7.02

8.25

8.15

8.72

6.64

8.10

5.52

9.37

13.17

6.67

6.68

6.22

10.02

8.16

6.78

6.48

10.44

7.65

8.77

7.00

11.06

9.02

13.28

9.27

6.70

6.69

9.42

7.24

5.39

5.61

5.59

6.57

6.54

4.23

5.22

18.00

11.03

0.78

0.75

0.68

0.70

0.62

0.76

0.73

0.71

0.69

0.73

0.68

0.74

0.66

0.72

0.68

0.77

0.78

0.78

0.81

0.79

0.77

0.78

0.72

0.79

0.77

0.80

0.71

0.79

0.76

0.78

0.62

0.75

0.71

0.74

0.65

0.66

0.84

0.74

0.75

0.75

0.79

0.72

0.70

0.66

0.69

0.71

0.73

0.65

0.82

0.80

0.83

0.70

0.74

1.37

1.49

1.44

1.42

1.35

1.39

1.16

1.27

1.16

1.25

1.13

1.10

1.15

1.23

1.39

1.38

1.35

1.42

1.37

1.41

1.35

1.48

1.24

1.40

1.45

1.40

1.28

1.33

1.22

1.28

1.47

1.27

1.51

1.46

1.27

1.43

1.50

1.35

1.41

1.47

1.35

1.40

1.20

1.15

1.09

1.26

1.36

1.15

1.87

1.17

1.61

1.34

1.22

1.45

1.30

1.37

1.65

1.91

1.68

1.94

1.89

1.94

2.06

1.96

1.02

1.85

0.88

0.62

1.09

1.60

1.53

1.40

2.22

1.32

1.48

0.68

2.30

1.37

1.51

1.43

1.82

2.62

1.75

1.54

2.25

1.07

1.44

1.40

1.31

1.12

1.16

0.88

1.07

1.24

1.49

2.03

1.84

1.22

1.72

1.75

1.46

1.60

1.47

1.38

1.41

1.39

6.40

7.80

9.76

7.90

5.35

9.90

4.50

4.88

3.46

3.60

3.56

5.65

4.28

8.85

8.52

7.19

4.82

5.46

6.20

4.25

5.38

5.88

9.27

4.36

10.31

4.69

4.16

3.13

4.02

5.23

2.74

3.10

10.44

5.65

6.67

5.91

11.99

8.30

1.63

8.94

5.82

4.80

5.01

4.12

5.10

3.49

4.19

5.01

11.44

7.67

4.66

4.30

6.62

47750

50391

43149

41089

14257

22661

52509

14903

25587

16821

19459

12973

50907

6920

5736

26705

20068

11487

32029

18946

28025

20968

11049

45893

99400

20719

36813

33956

17016

34873

11237

17306

39250

19074

18452

17500

7888

58947

94697

29626

11688

21955

12243

20193

20122

7612

27404

39648

43799

6235

11524

17309

22225





  • - А.М. Дубров и др. , Многомерные статистические методы М.: Финансы и статистика, 1998 г. – с.320 – 323.































Приложение 2.


Центрированная матрица


№ п/п

Y1 цен

X5 цен

X7 цен

X10 цен

X14 цен

X17 цен

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать