Методы физиологических исследований

В настоящее время зеркальные гальванометры применяют в качестве выходных устройств в так называемых шлейфных осциллографах.

Для регистрации исследуемого прогресса и наблюдения за ним в шлейфных осциллографах используется особая оптическая система. От лампы осветителя 1 луч света через линзу 2 и диафрагму 3 с помощью зеркала 4 направляется на зеркальце галь­ванометра 5 и линзой 6 делится на два пучка. Один пучок света линзой 7 фокусируется на поверхности движущейся фотобумаги (фотопленки), которая протягивается лентопротяжным механизмом 8. Второй пучок с помощью цилиндрической линзы – призмы 9 направляется на вращающийся многогранный зеркальный барабан 10 и, отражаясь от него, падает на матовый экран 11. За счет вращения зеркального барабана исследуемый процесс развертывается на экране и служит для визуального наблюдения.

Сочетание струнных и зеркальных гальванометров с оптическими системами позволяет производить регистрацию исследуемых процессов с применением фотографического метода или метода ультрафиолетовой записи. Последний позволяет получать видимую запись спустя несколько секунд после экспозиции без проявления.

Регистраторы с непосредственно видимой записью. В регистраторах этого типа преобразователями электрических сигналов являются магнитоэлектрические (рамочные) или электромагнитные вибраторы, на подвижные элементы которых вместо зеркальца укрепляют различные инструменты записи.

Чернильно-перьевые регистраторы. Этот тип устройств широко используют при регистрации физиологических функций. В них перо 5 укреплено на рамке или ферромагнитном якоре 2, которые находятся в поле магнита 1. Перо соединено эластичной трубкой 4 с резервуаром для чернил 3. Исследуемый процесс записывается на бумажной ленте 6. Чернильно-перьевые регистраторы удобны в эксплуатации и вполне пригодны для решения многих задач. Их успешно используют в электроэнцефалографах, электрокардиографах, электрогастрографах и других приборах. Однако чернильно-перьевые регистраторы имеют ряд существенных недостатков. Они инерционны и не позволяют регистрировать электрические колебания с частотой, превышающей 150 Гц. В связи с этим они непригодны, например, для регистрации быстрых процессов, таких как биотоки нервов и нервных клеток и т. п. Кроме того, чернильно-перьевая регистрация (без специальной коррекции) вносит в исследуемый процесс радиальные искажения, обусловленные дугообразным движением пера на бумаге.

Струйный метод регистрации. Этот метод основан на пропускании через капилляр (диаметром 5-8 мкм), укрепленный на вибраторе, струи чернил под давлением 20 кг/см2: чернила, попадая на движущуюся бумажную ленту, оставляют след в виде кривой исследуемого процесса.

Струйный метод регистрации высокочувствителен и малоинерционен. Он позволяет совмещать удобство видимой записи с возможностью регистрации электрических сигналов в широком частотной диапазоне (от 0 до 1500 Гц). Однако эти регистраторы требуют применения особых чернил, обладающих весьма высоким качеством (однородность состава).

Во всех регистраторах с непосредственно видимой записью скорость движения носителя записи (бумаги) определяется механической разверткой и не превышает 200 мм/с, в то время как для развертывания быстропротекающих процессов требуются большие скорости записи, что достигается с помощью электронной развертки в катодных осциллографах.

Электронные (катодные) осциллографы. Это – универсальные регистрирующие приборы. Они практически безынерционны и за счет наличия усилителей имеют высокую чувствительность. Эти приборы позволяют исследовать и регистрировать как медленные, так и быстрые колебания электрических потенциалов с амплитудой до 1 мкВ и менее. Выходным регистрирующим устройством катодного осциллографа является электронно-лучевая трубка с электростатическим или электромагнитным отклонением электронного луча.

Принцип действия электронно-лучевой трубки заключается во взаимодействии потока электронов, испускаемого катодом и сфокусированного системой электронных линз, с электростатическим или электромагнитным полем отклоняющих электродов.

Электронно-лучевая трубка состоит из стеклянного баллона, внутри которого в высоком вакууме находятся источник электронов и системы электродов (направляющие, фокусирующие и отклоняющие), управляющие электронным лучом.

Источником электронов является катод 2, подогреваемый нитью накала 1. Отрицательно заряженные электроны через управляющую сетку 3 притягиваются системой положительно заряженных анодов 4, 5 и 6. При этом из электронов формируется электронный луч, кото­рый проходит между вертикальными 7 и горизонтальными 8 откло­няющими пластинами и направляется на экран 9, покрытый люминофором (веществом, обладающим способностью светиться при взаимо­действии с электронами). Управляющая сетка 3 имеет по отношению к катоду отрицательный потенциал, величина которого регулируется потенциометром 10. При изменении (с помощью потенциометра) потенциала сетки изменяется плотность потока электронов в электронном луче, а следовательно, яркость свечения луча на экране. Фокусирование электронного луча осуществляется потенциометром 10, т. е. за счет изменения положительного потенциала на втором аноде 5.

Горизонтальные и вертикальные отклоняющие пластины управ­ляют движением электрического луча соответственно в горизонтальной и вертикальной плоскостях, для чего на них подаются потенциалы с усилителей горизонтального (б, х1 и х2) и вертикального (а, у1 и у2) отклонения луча. Если на горизонтальные отклоняющие пластины подавать пилообразное напряжение, то луч осциллографа будет перемещаться в горизонтальной плоскости слева направо. Изменяя режим работы генератора пилообразного напряжения, можно регулировать скорость развертки, т. е. скорость прохождения луча по экрану осциллографа. Это необходимо потому, что исследуемые процессы (сигналы) имеют разные частотно-временные параметры.

Исследуемый процесс (сигнал) обычно подается на вертикальные отклоняющие пластины, которые перемещают луч вверх или вниз, в зависимости от знака и величины приложенного к ним напряжения. Таким образом, потенциалы, приложенные к пластинам, управляют перемещением луча по горизонтальной (х) и вертикальной (у) осям, т. е. развертывают исследуемый процесс.

Регистрацию исследуемых процессов с экрана катодного осциллографа осуществляют фотографическим способом с применением световых фотоаппаратов или специальных фотокамер.

Магнитографы. Регистрация электрических процессов на ферромагнитную ленту удобна тем, что записанная таким образом информация может длительно храниться и многократно воспроизводиться. С помощью различных регистраторов ее можно переводить в видимую запись с различным масштабом развертки. Эту информацию можно обрабатывать после окончания эксперимента с помощью различных автоматических устройств и электронно-вычислительных машин. Магнитографы позволяют записывать и протокол эксперимента.

ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ


В современных условиях ЭВМ являются неотъемлемой частью научно-исследовательских лабораторий, так как электронно-вычислительные машины значительно повышают эффективность труда исследователей Ввод данных об исследуемом процессе можно производить различными способами: ручным (когда предварительно рассчитанные амплитудно-временные параметры, например, электрокардиограммы вводят с клавиатуры ЭВМ) или с промежуточного носителя информации (например, с перфокарты или перфоленты, на которых закодирована информация).

Однако наиболее удобно и экономично вводить информацию в ЭВМ с помощью специального устройства – амплитудно-цифрового преобразователя (АЦП). Амплитудно-цифровой преобразователь трансформирует амплитудно-временные параметры исследуемого процесса (например, амплитуду и длительность различных компонен­тов ЭКГ) в цифровой код, который воспринимается, анализируется и обрабатывается процессором ЭВМ. Математически обработанная (по заданным программам) в ЭВМ информация может быть представлена в различных формах: в виде таблицы, отпечатанной на цифропечатаюшем устройстве; в виде графика, построенного графопостроителем; в виде изображения на экране дисплея или в другой форме. При этом исследователь освобождается от рутинной работы не только по измерению, обсчету, математическому анализу результатов, но и от необходимости составлять таблицы и строить графики.

ПРИБОРЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ


Приборы специального назначения обычно предназначены для регистрации какой-либо одной функции или процесса, например электрокардиограммы, электроэнцефалограммы, электрогастрограммы и др. Такая специализированная аппаратура, как правило, компактна, проста в эксплуатации и удобна для проведения клинических исследований. В ее состав входят различные блоки (системы) общего назначения, поэтому знание принципиального устройства отдельных блоков позволяет легко разобраться в работе приборов специального назначения. Общая структура прибора специального назначения включает электроды или датчик, коммутатор, усилитель, регистратор и блок питания. Более детальное знакомство с каждым прибором осуществляется с помощью инструкции по эксплуатации, прилагаемой к прибору.

Электростимуляторы. Для электрической стимуляции биологических объектов вплоть до середины текущего столетия применяли индукционные катушки, которые в настоящее время полностью заменены электростимуляторами. Электростимулятор – один из самых распространенных и необходимых приборов. Он обеспечивает оптимальные условия раздражения тканей (с наименьшим их травмированием при длительной стимуляции) и удобен в работе.

Для исследовательских целей целесообразно использовать стимулятор, который в зависимости от условий эксперимента может служить либо генератором тока, либо генератором напряжения. Внутреннее сопротивление выходного устройства такого стимулятора можно изменять в соответствии с целями эксперимента. Оно должно быть или в 30-40 раз больше сопротивления объекта исследования (при работе в режиме «генератор тока»), или во столько же раз меньше (в режиме «генератор напряжения»). Однако подобные универсальные стимуляторы сложны и громоздки, поэтому в условиях физиологического практикума лучше применять более простые приборы.

Стимулятор состоит из нескольких блоков (каскадов), принципиальное назначение которых не зависит от типа стимулятора. Рассмотрим назначение отдельных каскадов стимулятора и связанных с ними органон управления на примере стимулятора импульсного физиологического СИФ-5.

Генератор частоты следования импульсов (задающий генератор) часто конструируют по схеме мультивибратора; он может работать в ждущем и непрерывном режимах. При работе в ждущем режиме задающий генератор может генерировать импульсы или при нажатии кнопки «Пуск» 9, или при подаче на вход мультивибратора запускающих сигналов от другого источника импульсов. В первом случае генерируется только один импульс, во втором - частота импульсов будет соответствовать частоте запускающих сигналов. При непрерыв­ном режиме работы 8 задающий генератор стимулятора генерирует импульсы непрерывно, их частоту / можно изменять от долей герца до нескольких сотен герц.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать