Сопоставление должно производиться для всех вариантов конструкций РЗС, применяемых в конкретных условиях водозабора и имеющих достаточно высокие значения КРЭ. В тех случаях, когда левая часть уравнения значительно превышает правую, выбор следует сделать в пользу строительства РЗС. Однако, если правая часть существенно больше левой, то от строительства РЗС, очевидно, следует отказаться. В этом случае следует оценить затраты на создание рыбохозяйственных объектов, обеспечивающих производство товарной рыбы, в объёме прямых потерь и принять меры к их реализации.
При примерном равенстве левой и правой частей уравнения для принятия обоснованного решения следует внимательно рассмотреть и учесть природные условия объекта, в которых будет работать РЗУ: насыщение потока плавающим мусором, перемещающейся водной растительностью или твёрдым стоком (наносами) и т.п., осложняющими его эксплуатацию и снижающими рыбозащитную эффективность по сравнению с проектной.
При заборе воды при необходимости предусматривают Рыбозащитные устройства механического, гидравлического или физиологического типа. К механическим устройствам относят жалюзи, фильтры, а также простейшие механические заграждения в виде плетней, каменной наброски, растительных фильтров; к гидравлическим – запани, отбойные козырьки, струенаправляющие устройства, с помощью которых в водостоках гидравлическим путём создают направленное движение рыб у водоприёмных сооружений. Физиологическими являются устройства, обеспечивающие задержание рыб путём создания в воде звуковых, световых или электрических полей, завес из воздушных пузырьков и т.п.
Рыбозащитные устройства можно не применять на речных затопленных водоприёмниках при скорости обтекающего их меженного речного потока, более чем в 3 раза превышающей скорость входа воды в водоприёмные отверстия; на водоприёмниках фильтрующего типа; на водоприёмниках небольших водозаборов при условии замены на период ската молоди сороудерживающих решёток сетками с малыми ячейками и их периодической промывки обратным током воды.
Рыбозащитные устройства (РЗУ) в виде сетчатого конуса с рыбоотводом относятся к фильтрующему (отцеживающему) типу. Впервые они были предложены К.Ф. Химицким. Этот тип РЗУ выгодно отличается от плоской сетки конструкцией рабочего элемента, позволяющей уменьшить габариты рабочего органа, а также не столь высокими требованиями к наличию транспортного потока в районе водозабора.
Конусные сетчатые РЗУ позволяют решать задачу рыбоотведения практически для любых водоёмов, в том числе для прудов и озёр, в которых отсутствуют течения. Конструктивно РЗУ этого типа состоят из несущей конструкции и сетчатого конуса. В несущей конструкции размещается рабочий орган – кассета с сетчатым конусом, системой вращения и промывки. Кассету можно устанавливать в стационарном варианте на постоянно действующих водозаборах и в навесном варианте – для плавучих насосных станций. Сетчатый конус (основной элемент РЗУ) обтянут металлической сеткой. Малый диаметр конуса служит для отвода рыбы в рыботовод. Вращение конуса, установленного на подшипниках скольжения, со скоростью 4–10 об/мин обеспечивается с помощью пневматического или электромеханического привода. Угол раскрытия конуса 24 – 38о.
Промывается конус водяными струями через флейты, установленные параллельно образующей конуса с его внешней стороны. Молодь рыб отбрасывается давлением воды от сетки и сносится в заднюю часть конуса к рыбоотводу. Отвод рыбы в рыбоотвод осуществляется с помощью эжектора или рыбонасоса. Перед входом в конус устанавливается грубая решётка, не позволяющая попадать в рабочий орган крупной рыбе, плавнику, веткам и т.д.
Разработаны конусные сетчатые РЗУ типа КРЗ (конусный разбрызгиватель), в том числе и унифицированные (УКРЗ-0,1; УКРЗ-0,2; УКРЗ-0, 35 и УКРЗ-0,5) с расходом 0,1–0,5 м3/с. Вращение конуса в этих конструкциях обеспечивается с помощью гидравлического привода.
Кислородно-флюсовая резка.
Для резки высоколегированных хромистых и хромоникелевых сталей, чугуна и цветных металлов, которые не поддаются обычной кислородной резке, применяется кислородно-флюсовая резка.
Сущность процесса кислородно-флюсовой резки заключается в том, что в зону резки дополнительно подают порошкообразный флюс. Часть флюса при горении в струе кислорода выделяет дополнительно большое количество тепла, способствующего расплавлению тугоплавких окислов железа, которые сильно разжижают шлаки на поверхности реза. Другая часть порошка способствует механическому удалению расплавленных шлаков с полости реза.
Для кислородно-флюсовой резки применяют специальную аппаратуру, состоящую в основном из флюсопитателя и резака с приспособлениями для подачи флюса.
Наибольшее распространение в промышленности получили установки типа УРХС (установка резки хромистых сталей) конструкции ВНИИАвтогенмаш.
Установка УРХС-5 предназначена для ручной разделительной кислородно-флюсовой резки одним резаком высоколегированных хромистых и хромоникелевых сталей толщиной 10–200мм. Установка работает по схеме внешней подачи флюса к резаку и состоит из следующих основных частей: флюсопитателя ФП-1-65 и резака РАФ-1-65. Резак РАФ-1-65, в свою очередь, состоит из серийного резака Р2А-01, флюсовой приставки и тележки с циркульным устройством. Резак Р2А-01 в установке служит для образования горючей смеси (подогревающего пламени) и подачи режущего кислорода в зону реза. В качестве горючего газа для подогревающего пламени служит ацетилен. Можно использовать пропан-бутан и природный газ с теплотворной способностью не ниже 34000кДж/м3. В этом случае применяется резак Р3П-01.
Флюсовая приставка предназначена для включения и выключения подачи флюса в зону реза, который, воспламеняясь и сгорая в месте реза, значительно повышает температуру и образует шлаки с более низкой температурой плавления, менее вязкие, легко удаляемые из разреза.
Флюсопитатель ФП-1-65 состоит из бачка, вмещающего 20кг железного порошка марки ПЖ4М и ПЖ5М (ГОСТ 9849–74), циклонного регулировочного устройства и редуктора. Работает флюсопитатель следующим образом. Кислород поступает из баллона (трубопровода) в тройник флюсопитателя, где разветвляется на три потока. Основная часть кислорода подаётся по шлангу в резак, другая часть поступает в редуктор, после которого дополнительно разветвляется на два направления: в верхнюю часть бачка для создания давления на флюс и через вентиль в циклонное регулировочное устройство. Из бачка флюс под давлением осыпается в циклонную камеру, где увлекается кислородом и подаётся в флюсовую приставку на резаке. Для обеспечения нормальной работы флюсопитателя необходимо оставлять в бачке не менее 2кг флюса. Флюсопитатель рекомендуется устанавливать на расстоянии не более 10м от места резки. Перед засыпкой флюс необходимо просеять через сетку для удаления частиц крупнее 0,16мм.
Установку УРХС-5 можно использовать и для механизированной резки, оснастив машинный резак флюсовой приставкой, чертежи которой приведены в инструкции по эксплуатации установки.
Для резки стали толщиной от 200 до 600мм применяется установка УРХС-6. Она комплектуется флюсопитателем ФП-2-65 и резаком РАФ-2-65. Устройство её аналогично устройству установки УРХС-5. Бачок флюсопитателя вмещает 35кг флюса. Кислород подаётся от рампы из десяти баллонов, ацетилен – от рампы из трёх баллонов.
Техника кислородно-флюсовой резки в основном не отличается от обычной кислородной. Она может быть как ручной, так и механизированной. При механизированной резке кислородно-флюсовые резаки устанавливают на любую серийную газорезательную машину. Применяют как разделительную, так и поверхностную кислородно-флюсовую резку. Лучше всего кислородно-флюсовой резке поддаются хромистые и хромоникелевые стали, в этом случае достигается наилучшее качество реза.
При кислородно-флюсовой резке чугуна в зоне резки происходит отбел и возникают поверхностные трещины из-за большого содержания углерода и быстрого охлаждения разрезаемых кромок детали. Для улучшения качества резки необходим предварительный подогрев чугуна и замедленное остывание его после резки.
Хуже поддаются резке медь и её сплавы (латунь, бронза). При кислородно-флюсовой резке меди необходим предварительный подогрев до температуры 800–900оС участка, с которого начинается резка. Без предварительного подогрева резка меди из-за её высокой теплопроводности невозможна. Сплавы на основе меди также требуют предварительного подогрева до температуры 400–500оС участка, с которого начинается процесс резки.
Режимы кислородно-флюсовой резки высоколегированных сталей приведены в таблице 1, чугуна – в таблице 2.
Табл.1. Ориентировочные режимы кислородно-флюсовой резки высоколегированных сталей.
Параметры
Толщина разрезаемой стали, мм
10
20
30
40
60
80
100
Рабочее давление кислорода, кгс/см2
3,5–4
4–4,5
4,5–5
5–5,5
5,5–6
6–7
7–8
Прямолинейная резка
Скорость резки, мм/мин
760
575
490
435
370
330
300
Расход кислорода, м3/м реза
0,18
0,35
0,5
0,65
0,95
1,2
1,5
Расход ацетилена, дм3/м реза
17
24
30
35
45
65
60
Расход флюса, кг/м реза
0,2
0,2
0,3
0,3
0,4
0,45
0,5
Фигурная резка
Скорость резки, мм/мин