При травлении в серной или соляной кислоте стальных изделий на их поверхности в ряде случаев образуется шлам, нерастворимый в этих кислотах. Для удаления шлака осуществляют травление при комнатной температуре в равнообъемной смеси серной и соляной кислот либо в растворе, содержащем серную кислоту (30—40 г/л), хромовый ангидрид (70—80 г/л) и хлористый натрий (2—4 г/л), или электрохимическое обезжиривание на аноде в горячем щелочном растворе для получения светлой поверхности на изделиях из углеродистых сталей посте травления их необходимо последовательно обработать в растворах следующих составов: хлорное железо 160—170, соляная кислота 140—150, моющее средство «Прогресс»» 3—5 г/л или фторид аммония 45—50 г/л, пероксид водорода (30 %-ный) 350—370 мл/л, мочевина 45—50 г/л [18].
Травление коррозионностойких сталей проводят главным образом в смесях серной соляной, азотной и плавиковой кислот [19]. В некоторых случаях к этим растворам добавляют соли этих кислот, и в некоторых – с целью интенсификации – травление проводят в ультразвуковом поле [20].
Для снятия травильного шлама с поверхности нержавеющих сталей используются нагретые до 20-30 °С растворы следующих составов, г/л серная кислота 15-30, хромовый ангидрид 70-120, хлорид натрия 3-5 (при τ=5-10 мин), азотная кислота 350-450 плавиковая кислота 4-5 (при τ =1-5 мин) [1, 11].
Удаления оксидных пленок с поверхности нержавеющей и быстрорежущей стали, а также титана, можно достигнуть, используя при температуре 370-3800С расплав едкого натра, в которые введено 1,5-2» гидрида натрия [11].
Химическое травление цветных металлов ведут в разных кислотах или их смесях, а в некоторых случаях и в щелочах, например, при обработке алюминия и его сплавов [21].
Электрохимическое травление. Электрохимический способ позволяет снизить расход химикатов, сократить продолжительность процесса, почти полностью исключает наводороживаине металла при травлении. Электрохимическое травление металлов ведут преимущественно на аноде при постоянном токе или с применением реверсирования тока
Для электрохимической обработки некоторых металлов предложен ряд растворов [1, 11, 22].
Универсальный электролит для электрохимической обработки тугоплавких металлов – ниобия, хрома, титана и их сплавов имеет состав, % (по массе): плавиковая кислота 3-4, фторид аммония 5-6, нитрат аммония 5-6 этиленгликоль 83-85, вода 8-10 [1, 23].
Таблица 1.
Электролиты и технологические режимы электрохимического травления сталей.
Обрабатываемые стали
Концентрация, г/л
Iа, А/дм3
Н2SО4
HCl
HF
FeSO4·7H2O
NaCl
Углеродистые
1
200-500
2-1
20-25
5-10
Кремнистые
2
300-350
0,2-0,3
5-11
Легированные
3
80-100
10-20
4
250-300
5-10
В табл. 1 приведены наиболее распространенные составы электролитов для электрохимического травления черных металлов [1, 18].
В ряде случаев электрохимическое травление стальных деталей ведут, реверсируя ток, в щелочном электролите следующего состава, г/л; едкий натр 100, триэтаноламин 20, соотношении продолжительности катодного и анодного периодов 4: 4 Выгрузка деталей производится в анодный период [1, 11, 18, 22].
Состав электролита для обработки титана, % (по массе) плавиковая кислота 4-5, фторид аммония 5-6, этиленгликоль 89, вода остальное.
Для ниобия и его сплавов предложены электролиты, % (по массе), серная кислота 10, плавиковая кислота 20, этиленгликоль 70; плавиковая кислота 2, фторид аммония 5-6, нитрат аммония 3-4, глицерин 78-80, вода 8-10 [24].
Последний электролит не оказывает агрессивного воздействия на обрабатываемое изделие и оборудование [25].
Электрохимическую обработку кобальта проводят в электролите состава % (по массе): хлорид кобальта 25, этиленгликоль 72, вода 3 [1].
Для травления диэлектриков наибольшее промышленное применение получили растворы серной кислоты с сильным окислителем, в качестве которого используют прежде всего хромовый ангидрид, реже – бихромат калия или натрия. При травлении сополимеров стирола в этих растворах происходят окисление и удаление полибутадиена (каучука) и внедрение сульфогруппы в поверхностный слой пластика. При этом каркас пластика претерпевает незначительные изменения, выражающиеся в образовании в поверхностном слое углублений шарообразной и овальной формы глубиной от сотых до нескольких микрометров [7].
При травлении полипропилена вытравливаются расположенные в поверхностном слое низкомолекулярные и аморфные участки полимера. Появляющиеся при этом микроуглубления более глубоки и удобны для зацепления с металлом, чем у пластика АБС [23]. Поверхность большинства других диэлектриков разрушается в процессе травления, вследствие чего создается необходимая шероховатость (углубления, раковины, каналы и т. п.).
Хромовая кислота вызывает и окислительную деструкцию полибутадиеновой цепи с образованием СО2 и Н2О [7, 11].
Серная кислота в растворах травления действует преимущественно как обезвоживающий агент и растворитель окисленных фракций. С увеличением ее концентрации снижается содержание хромового ангидрида в растворе (за счет уменьшения растворимости) и возрастает разрушающее воздействие H2SO4 на каркас диэлектрика [7, 11].
При содержании в растворе 50 -70 % серной кислоты она с большей скоростью, чем окислитель, разрушает не только каучук, но и каркас пластмассы (в частности, пластика АБС) [25]. В интервале 70 - 80 % наблюдается улучшение травимости, однако поверхность быстро перетравливается, т.е. становится рыхлой, снижается механическая прочность.
Скорость травления возрастает с повышением температуры [7].
На практике для травления сополимеров стирола чаще всего применяют растворы, содержащие 20 - 40 % серной кислоты и 20 -30 % хромового ангидрида [11]. При травлении полиолефинов, полиацеталей, поливинилхлорида и других пластмасс используют насыщенные растворы хромового ангидрида или бихроматов в концентрированных растворах серной кислоты [26].
Для более мягкого действия растворов травления в них иногда добавляют ортофосфорную кислоту, но ее присутствие затрудняет их аналитический контроль [23]. В ряде случаев в раствор вводят и другие добавки для улучшения смачиваемости, активации поверхности, регулирования скорости травления компонентов диэлектрика и др.
Травление поликарбоната и полиэфиров осуществляют также и в растворах, содержащих едкий натр, а силикатных материалов – в растворах, в состав которых входит фтористоводородная кислота и ее соли, преимущественно кислые.
Зависимость между составом раствора, температурой продолжительностью обработки и природой диэлектрика довольно сложная [27]. Поэтому оптимальные состав раствора и режим травления для конкретного диэлектрика в большинстве случаев устанавливают экспериментально с учетом марки и способа его получения, режимов изготовления детали, ее геометрической формы, шероховатости поверхности, продолжительности эксплуатации раствора содержания в нем продуктов реакции, других факторов [1, 23, 24, 27, 31]
Наиболее подходящим для травления пластика АБС-2020 является раствор, содержащий (г/л):
ангидрид хромовый СгО3............ 370—390
кислота серная H2SO4.................... 380—400
(при режиме обработки: температура – 63-680С продолжительность – 8-15 мин).
Для улучшения смачиваемости пластика в раствор травления вводят 0,5-1,5 г/л препарата «Хромин». С целью отвода продуктов реакции, обеспечения равномерности концентрации Сr6+ и температуры травление производят при умеренном перемешивании раствора сжатым воздухом [26].
При обработке труднотравимых диэлектриков иногда на их поверхность наносят промежуточное лаковое покрытие, которое подвергают травлению [7].
Корректируют хромовокислые растворы травления путем введения в них требуемого количества хромового ангидрида или бихромата, растворенного в минимальном количестве воды, и серной (или серной и ортофосфорной) кислоты [7, 28].
Способы устранения возможных неполадок, обнаруживаемых на операции травления в хромовокислых растворах, приведены в табл. 2.
Таблица 2
Основные неполадки в работе хромовокислых растворов травления
Неполадки
Причина
Способ устранения
После травления поверхность пластика блестящая, не смачивается водой
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16