Условие прочности по наклонному сечению АС на действие изгибающего момента удовлетворяется.
Рис. 23 – Схема усилий в сечении АС при расчете на прочность на действие момента
VI РАСЧЕТ ФУНДАМЕНТА
Исходные данные:
Заглубление фундамента:
Согласно СНиП 2.02.01-83* "Основания зданий и сооружений" нормативная глубина промерзания определяется по формуле:
где - коэффициент равный сумме отрицательных среднемесячных температур для Хабаровска, как наиболее близко расположенного к г. Мухен (Мухен отсутствует в табл.3 СНиП 23-01-99 Строительная климатология); d0=0,23 – величина, принимаемая для суглинков.
Расчетная глубина сезонного промерзания грунта df определятся по формуле:
- где kh=0,6 – коэффициент, учитывающий влияние теплового режима сооружения. Принимаем глубину заложения фундамента Hз=1,2 м.
Сечение |
Сочетание |
Номера нагрузок |
Расчетные |
Нормативные |
||||
М, кНм |
N, кН |
Q, кН |
М, кНм |
N, кН |
Q, кН |
|||
У обреза фундамента |
+Моф -Моф Nmin,оф |
2,8,14 2,5,13 0,8,14 |
+231,52 -245,85 +231,26 |
+669,89 +1059,58 +605,25 |
-34,44 +15,42 -35,37 |
|
|
|
У подошвы фундамента |
+Мпф -Мпф Nmin,пф |
2,8,14 2,5,13 0,8,14 |
+267,68 -262,04 +268,40 |
+669,89 +1059,58 +605,25 |
-34,44 +15,42 -35,37 |
+232,77 -227,86 +233,39 |
+582,51 +921,37 +526,30 |
-29,95 +13,41 -30,76 |
Усредненная плотность фундамента и грунта на обрезах расчетное сопротивление грунта R=0,20 МПа; класс бетона В15; Rb=8,5 МПа; Rbt=0,75 МПа; Еb=20500 МПа. Класс арматуры А-II. Rs=280
МПа; Rsc=280 МПа.
Примечания:
1)
2)
3)Q(Nmin)=
(Hф=1,05 м)
Нормативные усилия получены делением расчетных на усредненный коэффициент надежности по нагрузке
Рис.24 – Схема загружения фундамента
6.1 ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ПОДОШВЫ ФУНДАМЕНТА
6.1.1 Выбор типа фундамента
Фундамент проектируется симметричным, если отношение моментов разных знаков , а также если соблюдается условие В расчете:
Следовательно, фундамент симметричный.
6.1.2 Назначение размеров подошвы фундамента
Принимается отношение ширины подошвы фундамента к длине Первоначально Далее (кратно 0,3 м).
Параметры:
Длина подошвы:
Принимаем (кратно 0,3 м).
Тогда площадь подошвы равна
Проверяем условие Увеличим b до 2,4 м. Тогда отношение Площадь подошвы равна
6.1.3 Проверка напряжений под подошвой фундамента
I сочетание: N=582,51 кН; M=232,77 кНм;
II сочетание: N=921,37 кН; M=227,86 кНм;
III сочетание: N=526,30 кН; M=227,86 кНм;
Проверка среднего давления:
Условие выполняется с большим запасом, поэтому изменяем размеры подошвы до 2,4 х 3,6 м. Площадь подошвы равна
I сочетание: N=582,51 кН; M=232,77 кНм;
II сочетание: N=921,37 кН; M=227,86 кНм;
III сочетание: N=526,30 кН; M=227,86 кНм;
Проверка среднего давления:
6.2 Назначение размеров подколонника
Конструктивные требования: толщина стенки стакана dc принимается кроме этого, в плоскости изгиба при при
В нашем случае
Принимаем (в плоскости М) dc=15 см. Тогда
Принимаем hп=1,20 м (кратно 0,3 м).рр
Принимаем из плоскости момента dc=0,15 м, тогда ширина сечения подколонника:
Принимаем bп=0,9 м (кратно 0,3 м).
Рис.25 – Схема подколонника.
Глубина стакана hc определяется из двух условий:
1. Глубина стакана должна быть не менее:
при (0,44 м<1,4 м) большего размера сечения колонны плюс 5 сантиметров:
2. Глубина заделки колонны в стакане должна удовлетворять требованию заделки рабочей арматуры колонны:
Из условий анкеровки арматуры:
где
но не менее и
Принимаем большую глубину стакана: hc=0,75 м.
6.3 Определение максимальных краевых напряжений на грунт от расчетных нагрузок
Краевые напряжения на грунт определяются по формуле:
6.4 Определение высоты плитной части фундамента
Высота плитной части фундамента НПЛ определяется из условия продавливания. При этом возможно два случая:
а) продавливание происходит от подколонника, что возможно при
где Нп – высота подколонника;
б) продавливание от дна стакана, что возможно при
Так как пока в расчете высота подколонника Нп неизвестна, предполагаем второй случай расчета.
Требуемая рабочая высота плитной части фундамента Н0 определяется по формуле:
где Pгр=0,16 МПа.
Вместо bn и hn подставляются размеры колонны bcol+0,1=0,5 м и hcol+0,1=0,8 м.
Высота плитной части должна быть не менее:
(модуль 0,3 м).
Принимаем двухступенчатую плиту с высотой нижней ступени 0,45 м и верхней – 0,3 м.
НПЛ=0,75 м, H0=0,75-0,05=0,70 м.
Проверяем случай расчета:
где
Так как м, имеет место второй случай (продавливание от дна стакана).
6.5 Расчет высоты и вылета нижней ступени
Высота нижней ступени h1 проверяется расчетом на продавливание, а наибольшая величина с1max устанавливается расчетом на поперечную силу при отсутствии поперечной арматуры.
Расчет на продавливание производится на действие только расчетной продольной силы Nc, действующей в уровне торца колонны:
на продавливание фундамента колонной от дна стакана;
на раскалывание фундамента колонной.
Расчетная продольная сила Nc, действующая в уровне торца колонны, определяется из условия
Nc=
где - коэффициент, учитывающий частичную передачу продольной силы N на плитную часть фундамента через стенки стакана и принимаемый равным но не менее 0,85,
- площадь боковой поверхности колонны, заделанной в стакан фундамента.
принимаем
Проверка фундамента по прочности на продавливание колонной от дна стакана при действии продольной силы Nc производится из условия
,
где А0 – площадь многоугольника abсdeg (см. рис.26), равная
h0,p – рабочая высота пирамиды продавливания от дна стакана до плоскости расположения растянутой арматуры;
bp, lp – размеры по низу меньшей и большей сторон стакана.
bp=0,50 м, lp=0,80 м.
Рис. 26 – Схема образования пирамиды продавливания в стаканном фундаменте от действия только продольной силы
Проверка фундамента по прочности на продавливание:
- условие не выполняется, увеличим высоту нижней ступени до 60 см.
Пересчитаем усилия, действующие в подошве фундамента.
Таблица 9 –
Сочетание усилий
Сечение |
Сочетание |
Номера нагрузок |
Расчетные |
Нормативные |
||||
М, кНм |
N, кН |
Q, кН |
М, кНм |
N, кН |
Q, кН |
|||
У обреза фундамента |
+Моф -Моф Nmin,оф |
2,8,14 2,5,13 0,8,14 |
+231,52 -245,85 +231,26 |
+669,89 +1059,58 +605,25 |
-34,44 +15,42 -35,37 |
|
|
|
У подошвы фундамента |
+Мпф -Мпф Nmin,пф |
2,8,14 2,5,13 0,8,14 |
+272,85 -264,35 +273,70 |
+669,89 +1059,58 +605,25 |
-34,44 +15,42 -35,37 |
+237,26 -229,87 +238,00 |
+582,51 +921,37 +526,30 |
-29,95 +13,41 -30,76 |
(Hф=1,20 м)
Нормативные усилия получены делением расчетных на усредненный коэффициент надежности по нагрузке
Проверка напряжений под подошвой фундамента
I сочетание: N=582,51 кН; M=237,26 кНм;
II сочетание: N=921,37 кН; M=229,87 кНм;
III сочетание: N=526,30 кН; M=238,00 кНм;
Проверка среднего давления:
Краевые напряжения на грунт определяются по формуле:
Проверка фундамента по прочности на продавливание:
- условие выполняется.
Рис. 26 – Схема образования пирамиды продавливания в стаканном фундаменте от действия только продольной силы
Проверка фундамента по прочности на раскалывание от действия продольной силы Nc производится из условия:
при
при
- коэффициент трения бетона по бетону, принимаемый равным 0,75;
- коэффициент, учитывающий совместную работу фундамента с грунтом и принимаемый равным 1,3;
Аl, Ab – площади вертикальных сечений фундамента в плоскостях, проходящих по осям сечения колонны параллельно соответственно сторонам l и b подошвы фундамента, за вычетом площади стакана фундамента (рис.27)
следовательно
- условие выполняется.
Рис.27 – Площади вертикальных сечений Аl и Аb при раскалывании стаканного фундамента от действия только продольной силы
Максимальный вылет нижней ступени С1max определяем при условии отсутствия поперечной арматуры на ширину b=1 м по формуле:
- проверка выполняется.
Рис.28 – К расчету высоты и вылета нижней ступени фундамента
6.6 Расчет арматуры подошвы фундамента
Расчет арматуры подошвы фундамента производится из условия изгиба плиты под воздействием реактивного давления грунта в двух направлениях: в плоскости рамы и из плоскости рамы (рис. 29).
1. В плоскости рамы:
Рис.29 – Расчетная схема работы плиты на изгиб (ступенчатая консоль)
Pгр=0,174 МПа;
Изгибающий момент на один метр ширины фундамента:
Требуемая площадь арматуры на 1 метр ширины фундамента в сечении 1-1:
В сечении 2-2:
В сечении 3-3:
Шаг стержней принимается равным 250 мм. Принимаем по большему значению 4Æ14 A-II с As=6,16 см2/м.
2. Из плоскости рамы на 1 погонный метр
Площадь арматуры на 1 погонный метр длины фундамента:
В сечении 1’-1’:
В сечении 2’-2’:
В сечении 3’-3’:
Шаг стержней принимается равным 200 мм. Принимаем по большему значению 4Æ10 A-II с As=3,14 см2/м (минимальный диаметр).
Таким образом, принята сварная сетка с размерами ячеек 250х200 мм из стержней Æ14 А-II, расположенных вдоль длинной стороны плиты фундамента, и из стержней Æ10 А-II, расположенных вдоль короткой стороны.
Так как диаметр арматуры класса А-II сетки не превышает 22 мм, в соответствии с п.5.26 пособия к СНиП 2.03.01 – 84* Бетонные и железобетонные конструкции проверку ширины раскрытия трещин в плитной части фундамента производить не требуется.
6.7 Расчет подколонника
Так как высота подколонника составляет 30 см, достаточно только поперечное армирование.
Поперечная арматура устанавливается конструктивно. Расстояние между горизонтальными сетками – 10 см, диаметр стержней – 10 мм.
Рис.30 – Горизонтальная арматура подколонника
Список литературы:
1. Гуревич Я.И., Танаев В.А. Расчет железобетонных конструкций одноэтажного промышленного здания: Учебное пособие для курсового и дипломного проектирования. – Хабаровск: Изд-во ДВГУПС, 2001. – 72 с.: ил.
2. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции. Общий курс. – М.: Стройиздат, 1991. – 767 с.
3. СНиП 2.03.01-84* Бетонные и железобетонные конструкции/Минстрой России. – М.: ГП ЦПП, 1996. – 76 с.
4. СНиП 2.01.07-85* Нагрузки и воздействия/ Минстрой России. – М.: ГП ЦПП, 1996. – 44 с.
5. Карты районирования территории СССР по климатическим характеристикам: Приложение 5 обязательное к СНиП 2.01.07-85*/ Госстрой СССР. – М.: ЦИТП Госстроя СССР, 1987. – с.7.
6. Пособие к проектированию фундаментов на естественном основании под колонны зданий и сооружений (к СНиП 2.03.01-84 и СНиП 2.02.01-83) Ленпромстройпроект Госстроя СССР. – М.: ЦИТП Госстроя СССР, 1989. – 112 с.
7. Пособие по проектированию основания зданий и сооружений (К СНиП 2.02.01-83)/НИИОСП им. Герсеванова – М.: Стройиздат, 1986. – 415 с.
8. СНиП 2.02.01-83 Основания зданий и сооружений/Минстрой России – М.: ГП WGG? 1996.