Ni плавление 1728 1455
Co плавление 1768 1495
Pd плавление 1827 1554
Rh плавление 2236 1963
Al2O3 плавление 2327 2054
Ir плавление 2720 2447
Nb плавление 2750 2477
Mo плавление 2896 2623
W плавление 3695 3422
2.2. Внутренняя энергия системы. Работа и теплота.
В термодинамике под энергией понимают меру способности системы совершать работу, при этом полную энергию системы разделяют на внешнюю и внутреннюю. Внешняя энергия системы состоит из энергии движения системы как целого и потенциальной энергии системы в поле внешних сил, а энергия всех видов движения и взаимодействия частиц, входящих в систему, называется внутренней энергией и обозначается U.
Очевидно, что внутренняя энергия состоит из энергии поступательного и вращательного движения молекул, колебательного движения атомов, межмолекулярного взаимодействия, внутриатомной энергии заполнения электронных уровней, внутриядерной.
При росте температуры внутренняя энергия растет. При взаимодействии системы с окружающей средой происходит обмен энергией. Способ передачи энергии, связанный с изменением внешних параметров системы называется работой. Способ передачи без изменения внешних параметров называется теплотой, а процесс передачи теплообменом.
Количество энергии, переданное системой с изменением внешних параметров, называется работой А. Работа – способ передачи упорядоченного движения.
Работа и теплота Q не являются видами энергии, а характеризуют лишь способ передачи энергии, т.е. процесс. Состоянию системы не соответствует какое-либо значение А или Q. Мы будем считать, что A > 0, если система совершает работу против сил сопротивления внешней среды, и Q > 0, если энергия передается системе. Теплоту и работу измеряем в одних единицах.
2.3. I закон.
Любая термодинамическая система обладает функцией состояния – внутренней энергией. Эта функция состояния возрастает на величину сообщенного системе количества тепла dQ и уменьшается на величину совершенной системой внешней работы dA. Для замкнутой системы справедлив закон постоянства энергии.
dU = dQ – dA (1).
Если в наличии конечное изменение состояния, то имеем конечный процесс 1 → 2: (2), , , .
(2) превращается в (3). U, Q и А имеют одинаковую размерность.
2.4. Работа расширения.
Пусть наша система характеризуется только одним внешним параметром объемом V. Давление Р характеризует взаимодействие системы с внешней средой и измеряется силой, отнесенной к единице поверхности. Если система находится в равновесии, то давление одинаково во всех частях системы и равняется внешнему давлению. Тогда работа изменения объема системы:
, , - зависит от р=р(V).
V = Const, то dV = 0, dA=0, то A=0, т.е. ΔU = , в этом случае тепловой эффект равен изменению функции состояния.
p = Const, то ; T = Const, то . В этом случае необходимо знать уравнение состояния системы .
Если система - идеальный газ, то , поскольку pV = nRT, А в связи с тем, что при T=const p1V1 = p2V2.
R = 0,082 Это стоит запомнить.
Кроме того, при Т = Const для идеального газа U = Const, dU = 0, A = Q, т.е. все тепло, полученное идеальным газом, перешло в работу.
Для адиабатического процесса dQ = 0 (Q = 0), dU = -dA, -ΔU = A т.е. положительная работа совершается за счет уменьшения U.
2.5. Теплота и теплоемкость.
Теплоемкостью системы называется отношение количества тепла, сообщенного системе в каком-либо процессе, к соответствующему изменению температуры:
1 кал = 4,1840 дж, 1 дж = 107 эрг (СИ)
Поскольку Q-функция процесса, то , а , .
Связь между Ср и Сv для любых систем найдем следующим образом.
dQ = dU + pdV I закон.
Выберем в качестве независимых переменных объем и температуру, тогда внутренняя энергия:
и ,
а .
Разделим правую и левую части на dT, получим:
.
Отношение есть отношение приращений независимых переменных, то есть величина неопределенная, и чтобы снять неопределенность, необходимо указать характер процесса. Пусть процесс изохорный.
V = Const и =СV.
Отсюда .
Далее при p = Const = Ср
И для любых систем .
Для идеальных газов (Строго докажем при II законе).
А поскольку pV = RT, то .
Заметим, что – работа, которую совершает система, преодолевая внутренние силы сцепления. Производная имеет размерность давления и называется внутренним давлением.
2.6. Уравнение адиабаты идеального газа.
dQ = dU + pdV.
Для идеального газа dU = CVdT, следовательно, dQ = CvdT + pdV, и если процесс адиабатический dQ = 0, то
,
, где .
CV и Cp для идеального газа не зависят от температуры:
,
Поскольку , то Уравнение Пуассона
Для газов величину γ можно определить, измеряя скорость звука в газе:
– скорость звука в газе, имеющего мольную массу М.
Глава 3. Термохимия.
3.1 Энтальпия.
Если система характеризуется только одним внешним параметром V, т.е. может совершаться только работа расширения, тогда первый закон может быть записан в виде: .
Если т.е. тепловой процесс эффекта равен изменению функции состояния. Найдем такую функцию состояния, изменение которой равно тепловому эффекту при постоянном давлении. Для этого выражение для I закона необходимо преобразовать так, чтобы давление находилось под знаком дифференциала. Обратим внимание, что
d(pV) = pdV + Vdp и pdV = = d(pV) – Vdp, а подстановка в выражение для I закона дает:
dQ = dU + d(pV) – Vdp = d(U + pV) – Vdp = dH -Vdp
H ≡ U + pV |
– функция состояния называется энтальпией. |
. При .
Выберем в качестве независимых переменных Т и р, тогда:
– отношение приращения независимых переменных является неопределенной величиной, чтобы избежать этого нужно указать конкретный процесс. Если p = Const, то
Очевидно, есть определенная симметрия между U и H:
3.2. Теплоты химических реакций. Закон Гесса.
При химических реакциях происходит изменение U, поскольку U продуктов реакции отличается от U исходных веществ. Пусть U2 – внутренняя энергия продуктов реакции, U1 – внутренняя энергия исходных веществ, ΔU = U2 –U1 - изменение U в результате химического процесса. Аналогично для энтальпии. Изучением теплот химических реакций занимается термохимия.
Q - теплота химической реакции, зависит от способа проведения химической реакции. ,
.
Т.о., в этих случаях Q равна изменению функции состояния и поэтому не зависит от пути процесса, а лишь от начального и конечного состояния.
Закон Гесса (1836). Если из данных исходных веществ можно получить заданные конечные продукты разными путями, то суммарная теплота процесса (при или при ) на одном каком-нибудь пути равна суммарной теплоте процесса на любом другом пути, т.е. не зависит от пути перехода от исходных вществ к продуктам реакции.
3.3. Термохимические уравнения.
Для облегчения расчетов следует поступать так если p=Const, то
Уравнения химических реакций вместе с тепловыми эффектами называются термохимическими уравнениями и с ними можно оперировать как с алгебраическими уравнениями. Запомним, что если:
Qp выделяется,
Qp поглощается
3.4. Связь между Qp и QV
.
,
,
, если реагенты только жидкие или твердые вещества.
, где Δn – изменение числа молей газообразных участников реакции:
CO + H2O = CO2 + H2 Δn = 0 Qp = Qv
N2 + 3H2 = 2NH3 Δn = -2 Qp < Qv
Zn (тв) + H2SO4 (ж) = ZnSO4 (p-p) + H2 (газ) Δn = +1 Qp > Qv
Но для реакции в конденсированной системе:
CuSO4 + 5H2O (ж) = CuSO4 5H2O (кр)
,т.е. разница между QP и QV очень мала, ею можно пренебречь.
3.5. Теплота образования химических соединений.