для которого время нагрева определяется соотношением:
t1=2r/υ (2.23)
а плотность мощности: gт = gэф / 4rd
где gэф - эффективная тепловая мощность.
Из (2.22) следует, что для максимальной глубины закалки необходимо, чтобы выполнялось условие:
(2.24)
gт√ t1 = Тпл аср√π / 4а
Кроме того, сканирующая плазменная струя создает концентрированный источник тепла диаметром 2r , скорость которого определяется из амплитуды и частоты колебаний, тогда время нагрева можно записать как:
(2.25)
t2 = 2( 2r / 4df ) = r/df
Множитель 2 означает, что в крайних точках пятно нагрева находится вдвое дольше, чем в промежуточных. Тогда плотность мощности соответственно равна:
( 2.26)
gт2 = gn / πr2
С целью исключения оплавления поверхности в крайних точках необходимо выполнение условия:
(2.27)
g2 √ τ2 ‹ g1 √τ1 ≤ Тпл аср√π / 4а
Амплитуда и частота сканирования должны соответствовать выражениям
(2,28)
√ d /f ‹ πr√8υ
или
Выражение (2.28) показывает, что частота сканирования должна увеличиваться с уменьшением пятна нагрева, с ростом скорости обработки и амплитуды сканирования. На тепловые процессы и размеры упрочненной зоны, помимо параметров режима работы плазмотрона (сила тока, расход газа и т.) оказывают влияние и параметры ведения технологического упрочнения, такие как скорость обработки, дистанция обработки, угол наклона плазменной струи (дуги) к обрабатываемому изделию и др.
При разработке технологических процессов на практике необходимо иметь простые 9 удобные аналитические выражения для расчета основных параметров упрочнения. В работах по плазменному упрочнению [10, 12 - 14] используются различные аналитические выражения. Так в работе [12] скорость нагрева локальной зоны определяется из выражения:
где gs - плотность мощности плазменной дуги;
α, λ- коэффициенты температуропроводности и теплопроводности;
τ - время воздействия;
h- глубина упрочнения.
Значение плотности мощности плазменной дуги достаточной для фазовыхпревращений определяют:
где Тзак - температура закалки;
В - коэффициент аккумуляции теплоты.
Глубина закаленного слоя определяется из выражения:
где Р - мощность плазменной дуги;
υ - скорость обработки;
d- диаметр пятна нагрева;
ρ - плотность материала;
Ст - удельная теплоемкость;
Q- теплота плавления;
Кв- коэффициент, учитывающий качество обрабатываемой поверхностности.
Скорость обработки определяется как:
В работе [13] используется зависимость глубины закалки от параметра
h = Р/ (dc υ)0,4
где Р - тепловая мощность источника нагрева;
d - диаметр сопла;
υ - скорость обработки.
В работах Токмакова В.П., Гречневой М.В., Петухова А.В., Скрипкина А.А., Матханова В.Н. приводятся расчетные данные, позволяющие определить температуру нагрева и скорость охлаждения металла. Построены номограммы для выбора оптимальных режимов плазменного упрочнения. Экспериментальные исследования процесса плазменного упрочнения сталей 9ХФ, 40Х, У8, Х12М,проведенные этими авторами , показали, что максимальная поверхностная твердость после упрочнения пропорциональна величине углеродного эквивалента Сэкв , а глубина упрочнениязависит от коэффициента температуропроводности. Это позволило авторам установить зависимость вида:
HWmax=f (g, υ, Сэкв);h = f2(g, υ, а)
В явном виде уравнения этих зависимостей выглядят следующим образом:
HVmax = 10-3 ﴾-0.308271 υ2+1.23441g2+12.792a2+1.71723 υg- 1.54273 υCэкв – 1.7919 υ+ 0.36981g-18.2439Cэкв+11,223)
h max = 262.506υ2 +50.3667g2 +1466.729а2 +107.754υg + 53.1505υα - 47.1105gа -
- 938.111υ + 199.495g – 5.6734а + 686.691
Полученные результаты, по мнению авторов, свидетельствуют о хорошем совпадении экспериментальных и расчетных данных, что позволяет, не проводя экспериментов, прогнозировать максимальную твердость и глубину упрочненных поверхностей, табл.2.3., 2.4.
Табл.2.3
Экспериментальные и расчетные значения поверхностной твердости HWmax, в зависимости от входных параметров (g, υ , С экв)
№ |
V, м/c |
g, кВт/м2 |
C,% |
HVэксп, МПа |
HVрас, МПа |
1 |
2 |
3 |
4 |
5 |
6 |
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. |
5 5 5 1 1 1 2,5 2,5 2,5 2,5 |
10 15 25 10 15 25 10 15 20 25 |
0,05 1,05 0,9 0,9 0,45 0,6 0,45 0,75 0,6 0,9 |
6000 10500 9000 6700 5900 5300 3100 4200 4900 9800 |
6383 10156 8702 6359 6045 5852 2961 4369 5202 8000 |
Табл.2.4.
Экспериментальные и расчетные значения глубины упрочнения
от hmax входных параметров
№ |
υ, м/c |
g, кВт/м2 |
а, см2/с |
hэксп, МПа |
hрас, МПа |
1 |
2 |
3 |
4 |
5 |
6 |
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 1,5 2,5 2,5 2,5 2,5 2,5 |
10 15 20 25 30 10 15 20 25 10 15 20 25 30 |
0,1 0,15 0,12 0,06 0,08 0,15 0,08 0,06 0,1 0,06 0,1 0,08 0,12 0,15 |
600 890 920 930 1250 310 250 130 410 45 120 140 330 500 |
623 831 882 945 1167 335 162 173 390 53 196 150 343 529 |
Построение математических моделей плазменного поверхностного упрочнения, отражающих кинетику процесса, основано на решении не линейных краевых задач теории теплопроводности. Корректное описание теплофизических процессов взаимодействия плазменной струи (дуги) с поверхностью обрабатываемого материала, возможно лишь с учетом необратимых процессов, сопровождающих поверхностную закалку детали, полиморфных превращений, окислительных реакций на
поверхности, энергетических потерь на плавление и испарение материала, изменение теплофизических свойств материала при нагреве и охлаждении. В качестве основы такой модели можно использовать «задачу Стефана» со свободной границей σ, являющейся фронтом мартенситного образования. Математическая постановка такой задачи сводится к определению температурных полей в поверхностном слое детали и к расчету границ раздела при полиморфных превращениях. Аналитическое решение возможно только при ряде упрощений. В работе [24] представлена математическая модель плазменного поверхностного упрочнения азотирования из газовой фазы.
2.2. Фазовые и структурные превращения при плазменном нагреве металлов
Несмотря на различие физических процессов, лежащих в основе того ими иного способа поверхностного упрочнения металлов (плазменного, лазерного, электронно-лучевого и т.д.), для всех характерна общая особенность - фазовые и структурные превращения протекают в условиях далеких от равновесия. Рассмотрим физические причины, позволяющие использовать сверхскоростной нагрев при термической обработке металлов. При использовании большинства видов термической обработки металлов с медленным нагревом для получения неравновесной структуры температура нагрева назначается выше на 30-50 ° С, критических температур Ас1 и Ас3.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18