Полимерия

Полимерия



Историческая справка.

         Термин “поли­мерия” был введен в науку И.Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содер­жание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.

         Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической  реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах отно­сятся к 1838 (поливинилиденхлорид) и 1839 (полистирол),

         Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью мо­лекул, проявляющейся в реакциях поли­меризации. Дальнейшее свое развитие наука о полимерах по­лучила главным образом благодаря интенсивным поискам способов  синтеза  каучука, в которых участвовали крупнейшие учёные многих стран (Г.Бушарда, У.Тилден, немецкий учёный К Гарриес,  И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было до­казано существование свободнорадикального и ионного механиз­мов полимеризации. Большую роль в развитии представлений о поликонденса­ции сыграли работы У.Карозерса.

         С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров Вначале предполагалось, что такие био­полимеры, как целлюлоза, крахмал, кау­чук, белки, а также некоторые син­тетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способ­ностью ассоциировать в растворе в комп­лексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально но­вого представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.








         Полимеры - химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромо­лекулы) состоят из большого числа повто­ряющихся  группировок  (мономерных звеньев). Атомы, входящие в состав мак­ромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация.

         По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтети­ческие, например полиэтилен, полипропилен,  феноло-формальдегидные смолы. Атомы или атомные группы могут распо­лагаться в макромолекуле в виде: откры­той цепи или вытянутой в линию после­довательности циклов  (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).

         Макромолекулы одного и того же хи­мического состава могут быть построены из звеньев различной пространственной конфигура­ции. Если макромолекулы состоят из оди­наковых стереоизомеров или из различ­ных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

         Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополиме­ры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присое­динены одна или несколько цепей дру­гого строения. Такие сополимеры называются привитыми.

         Полимеры, в которых каждый или некоторые сте­реоизомеры звена образуют достаточно длинные непрерывные последовательно­сти, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

         В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные,  в основной цепи которых со­держатся атомы различных элементов,  чаще всего углерода,  азота, кремния, фосфора, и гомоцепные,







основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее рас­пространены  карбоцепные полимеры, главные цепи которых состоят только из атомов углерода,


например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, бел­ки, некоторые кремнийорганические поли­меры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические по­лимеры, например пластическая сера, полифосфонитрилхлорид.



Свойства и важнейшие характеристики.

         Линейные полимеры обладают специфическим комп­лексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотроп­ные высокоориентированные волокна и пленки , способность к большим, дли­тельно развивающимся обратимым дефор­мациям; способность в высокоэластичном со­стоянии набухать перед растворением; высокая вязкость растворов. Этот комп­лекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гиб­костью макромолекул. При переходе от линейных цепей к разветвленным, ред­ким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комп­лекс свойств становится всё менее выра­женным. Сильно сшитые полимеры нераство­римы, неплавки и неспособны к высоко­эластичным деформациям.

         Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромоле­кулы. В кристаллических полимерах возможно возник­новение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во мно­гом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

         Незакристаллизованные полимеры могут нахо­диться в трех физических состояниях: стекло­образном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пласти­ками. В зависимости от химического состава, строения и взаимного расположения мак­ромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообраз­ное состояние;  полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклооб­разный продукт, переходящий в высоко­эластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекуляр­ными водородными связями, вообще не может существовать в высокоэластичном  состоянии  до  температуры  ее  разложения.  Большие



различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении  макромолекул на первый взгляд и невелики. Так, сте­реорегулярный полистирол - кристал­лическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.

         Полимеры могут вступать в следующие основные типы реакций: образование химических свя­зей между макромолекулами (так называемое сши­вание), например при вулканизации кау­чуков, дублении кожи; распад макромо­лекул на отдельные, более короткие фраг­менты, реак­ции боковых функциональных групп полимеров с   низкомолекулярными   веществами, не затрагивающие основную цепь (так называемые полимераналогичные  пре­вращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромоле­кулы, например внутримолекулярная циклизация. Сшивание часто протекает одно­временно с деструкцией. Примером полимераналогичных превращений может слу­жить омыление поливтилацетата, при­водящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомо­лекулярными веществами часто лимити­руется скоростью диффузии последних в фазу полимера. Наиболее явно это проявля­ется в случае сшитых полимеров. Скорость взаи­модействия макромолекул с низкомоле­кулярными веществами часто сущест­венно зависит от природы и расположения соседних звеньев относительно реагирую­щего звена. Это же относится и к внутри­молекулярным реакциям между функ­циональными группами, принадлежащи­ми одной цепи.

         Некоторые свойства полимеров, например раствори­мость, способность к вязкому течению, стабильность,   очень чувствительны к действию небольших количеств приме­сей или добавок, реагирующих с макро­молекулами. Так, чтобы превратить ли­нейный полимер из растворимого в полностью нерастворимый, достаточно  образовать на одну макромолекулу 1-2 поперечные связи.

         Важнейшие характеристики полимеров - химический состав, молекулярная масса и моле­кулярно-массовое распределение, сте­пень разветвленности и гибкости макро­молекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.

Получение.

         Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из раститель­ного и животного сырья. Синтетические полимеры получают полимеризацией и поликонден­сацией. Карбоцепные полимеры обычно синте­зируют полимеризацией мономеров с од­ной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных), Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С=О, С=N, N=С=О) или не­прочные гетероциклические   группировки.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать