Произврдство в доменой печи и сплавы

Наряду с восстановлением кремнезема в электропечи происходит частичное восстановление примесей кварцита и золы восстановителей: Al2O3, CaO, MgO и др. до элементов или карбидов, которые могут затем разрушаться железом, кремнием или кремнеземом. Восстановление примесей часто осуществляется за счет кремния.

Восстановление окислов железа, содержащихся в шихтовых материалах, протекает практически полностью. В восстановительных условиях печной плавки значительное количество фосфора из шихты переходит в сплав. Содержащаяся в ней сера в основном удаляется в виде летучих соединений с кремнием: SiS и SiS2.

Производство ферросилиция относится к бесшлаковым процессам, но тем не менее получение сплава всегда сопровождается получением некоторого количества шлака (на 1т ФС 45 получается 25-30 кг шлака). Причиной шлакообразования являются примеси шихтовых материалов, которые по физико-химическим условиям процесса не могут быть полностью восстановлены (глинозем, оксиды кальция, бария, магния и т.п.) и которые ошлаковываются кремнеземом. При недостатке восстановителя шлак обогащается кремнеземом, а также карбидом кремния вследствие разрушения гарнисажа. Результаты анализа шлаков на ЗФЗ и АЗФ приведены в табл.2.5. В шлаках обнаружены следующие собственно шлаковые минеральные фазы: геленит – 2 CaO · Al2O3 · SiO2, анортит – CaO · Al2O3· · 2 SiO2, сарколит – 3 CaO · Al2O3, гексаалюминат кальция – CaO · ·6 Al2O3, корунд – Al2O3, шпинель – MgO · Al2O3, диалюминат кальция – CaO · 2 Al2O3, сульфид кальция – CaS и силикатное стекло.


Таблица 2.5 – Химический состав шлаков на ЗФЗ и АЗФ.

Восстановитель

Влага

рабочая,

%

Состав абсолютно

зола

S

P

лету­чие

SiO2

Al2O3

Fe2O3

CaO

MgO

P

Донбасса

5

9-10

1,8

0,015

1,6-2

34-38

18-27

18-30

2-6

1-3

0,1-0,2

нефтяной

3,1

0,16

0,58

0,005

3,6

12-30

6-20

7-12

2-4

4-6

0,33


Шлаки имеют высокую температуру плавления (1500-1700 ºС), характеризуются значительной вязкостью, составляющей 1-5 Па·с, причем их вязкость повышается при повышении содержания кремнезема и карбида кремния (например, при недостатке восстановителя).

Вследствие высокой вязкости шлак частично остается в печи и вызывает зарастание ванны, при этом снижается производительность печи, увеличивается удельный расход электроэнергии и сокращается продолжительность кампании. В связи с этим необходимо полностью удалять из печи образовавшийся шлак, что достигается при глубокой и устойчивой посадке электродов и достаточном количестве восстановителя в шихте. Полному удалению шлака способствует вращение ванны печи, обеспечивающее разрушение карбидов и равномерный прогрев подины печи. В некоторых случаях при скоплении шлака его удаляют при помощи извести, задаваемой в печь. Однако введение флюсующих приводит к увеличению количества шлака и повышению удельного расхода электроэнергии. Основные меры борьбы со шлакообразованием при производстве ферросилиция сводятся к строгому контролю за введением в печь достаточного количества восстановителя и применению возможно более чистых материалов.

Производство ферросплавов сопровождается образованием значительного количества отвальных шлаков. Кратность шлака (отношение массы шлака к массе металла) при выплавке ферросилиция составляет 0,05-0,1 (бесшлаковый процесс).

Ферросплавные шлаки содержат корольки готового сплава и невосстановленные оксиды ведущих элементов сплавов. К тому же они обладают прочностью, абразивностью, огнеупорностью. Общий выход ферросплавных шлаков составляет более 5 млн. тонн в год. Перерабатывают около 45% этих шлаков.

Отвальные шлаки при производстве ферросилиция содержат до 30-50% готового металла в виде корольков и до 15% карбида кремния. Эти шлаки успешно используются в составе раскислительных и рафинирующих смесей в сталеплавильном производстве [3-7].


2.6  Технология выплавки


Для выплавки ферросилиция марки ФС 45 используют трехфазные печи различной мощности. Печи выполняют открытыми, закрытыми, герметизированными и с дожиганием газа под сводом, часто с вращением ванны. Такие печи позволяют снизить расход шихтовых материалов и электроэнергии и затраты труда, очищать выбросы в атмосферу и использовать колошниковые газы. Наблюдаемый значительный прирост мощности электропечной установки вызван тем, что при этом сокращаются капитальные и эксплуатационные затраты.

В дипломе рассматривается технология выплавки ферросилиция марки ФС 45 в закрытой трехфазной печи мощностью 24 МВ–А непрерывным процессом. Производство ферросилиция в закрытой печи непрерывным процессом экономически целесообразно, т.к.:

·  снижается расход шихтовых материалов и электроэнергии;

·  уменьшаются затраты труда;

·  извлечение ведущего элемента достигает 85 - 90 % ;

·  закрытая печь решает вопрос защиты окружающей среды от загрязнения и позволяет утилизировать отходящие газы.


Основные задачи правильного обслуживания закрытой печи сводятся к:

·  поддержанию необходимого давления под сводом;

·  обеспечению равномерного схода шихты

·  предотвращению чрезмерного выбивания газа через загрузочные воронки и забивания пылью подсводового пространства и газоходов печи.


Строение ванны закрытой печи при выплавке ферросилиция практически не отличается от строения ванны открытой печи, поэтому характер процессов в горне открытой и закрытой печи одинаков.

Ванны печей для выплавки ферросилиция выполняются круглыми с угольной футеровкой. Футеровка печи для выплавки ферросилиция (ФС 45) мощностью 24 МВ–А.

Для набивки швов угольной кладки применяют подовую массу.

Высота угольных стен горна печи обычно составляет 1200 - 1900 мм. Для обкладки днища и стенок кожуха используют асбестовый лист толщиной 10-15 мм. Подину и стены выполняют из алюмосиликатного кирпича, подину футеруют насухо (за исключением второго и третьего рядов, выкладываемых на растворе), а стены – на глинисто-мермельном растворе. Между кожухом и футеровкой имеется слой засыпки из алюмо-силикатной крупки (100-150 мм), компенсирующий тепловые расширение кладки и служащий добавочной теплоизоляцией.

Печь работает на самоспекающихся электродах Ø1200 мм и  Ø1400 мм. Глубина погружения электродов в шихте ниже загрузочных воронок должна быть не менее 1500 мм для ФС 45.

И.Т. Жердев отмечает, что в закрытой печи шихта на пути  к колошнику прогревается в воронках до 350-600 ºС и теряет не менее 65% гигроскопической влаги; выделяется значительная часть летучих; диоксид углерода CO2 при повышении температуры образует монооксид СО, на что расходуется углерод шихты. Газовую фазу подсводового пространства характеризует высокое содержание монооксида углерода; при попадании непросушенной шихты скачками повышается содержание H2. Главными составляющими газовой фазы в печи являются CO, SiO2 и конденсаты, выпадающие из газовой смеси, образующиеся в результате или превращения самих составляющих, или их взаимодействия по следующим реакциям:


SiO + CO2   "  CO + SiO2 ;                                                     (2.1)

2 CO   "  C + CO2 ;                                                                (2.2)

SiO + CO   "  C + SiO2 ;                                                         (2.3)

3 SiO + CO   "  SiC + 2 SiO2 ;                                                (2.4)

2 SiO   "  Si + SiO2 ;                                                               (2.5)


Около половины конденсатов являются продуктами реакции (2.4) и ~ 30% получены по реакции (2.5). Состав пыли в подсводовом пространстве изменяется в зависимости от марки выплавляемого сплава. Так, при выплавке ФС 45 в пыли возрастает количество SiC, SiO и продуктов его окисления – лешательерита и кристобалита. Химический состав пыли при выплавке ФС 45 приведен в табл. 2.17.


Таблица 2.17 – Химический состав пыли при выплавке ФС 45.

Сплав

Массовая доля, %

SiO2

Mn

CaO

MgO

Al2O3

FeO

P

C

S

ФС 45

77,8-91,2

0,35-0,6

0,24-0,8

1,52-6,8

1,92-2,0

3,22-6,48

0,05

не опр.

2,95-12,35


Зарастание подсводового пространства конденсатами из колошниковых газов, при прочих равных условиях, является, главным образом, результатом недостатка углерода в ванне печи. Однако избыток восстановителя также приводит к выходу колошниковых газов в большом количестве с более высокой температурой и с повышенным содержанием в них SiO вследствие недостаточного погружения электродов в шихту. Для обеспечения нормального хода восстановительного процесса в закрытой печи необходимо при прочих равных условиях ограничивать поступление в подсводовое пространство газообразных продуктов, способных образовывать конденсаты. Для уменьшения подсоса воздуха загрузочные воронки и течки должны быть заполнены шихтой, а печные бункера – заполнены не менее, чем на половину объема.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать