[]=78МПа
Определяем заданное число циклов нагружений [№3 с.190] колеса при частоте вращения
Вычислим коэффициент долговечности
[№3 с.190]
- условие выполняется.
Тогда допускаемое напряжение изгиба:
- [№3 с.191]
(МПа)
Проверим напряжение изгиба
- [№3 с185]
Т.к. =7,72(МПа) << =51,22(МПа) – прочность колеса обеспечена.
Определим другие основные размеры червяка и червячного колеса.
а) Червяк:
Диаметр внешних витков: [№3 с.178]
(мм.)
Диаметр впадин: [№3 с.178]
(мм.)
Длина нарезанной части червяка (при числе заходов Z1=2):
(№3 с.178)
(мм.)
Т.к. червяк шлифованный принимаем b1=187,6+35=222,6(мм.) [№3 с.178]
b) Червячное колесо:
Делительный диаметр [№3 с.178]
(мм.)
Диаметр вершин зубьев в среднем сечении:
[№3 с.178]
(мм.)
Диаметр впадин в среднем сечении:
[№3 с.178]
(мм.)
Наибольший диаметр червячного колеса:
[№3 с.178]
(мм.)
Ширина венца:
[№3 с.179]
(мм.)
Окончательно проверим зубья колеса на контактную усталость по условию:
[№3 с185] (т.е значение должно лежать в интервале 126…147(МПа) )
и формуле:
(№3 с.185)
(Па)=141,3(Мпа)
Т.к. - прочность зубьев на контактную усталость обеспечена.
По рекомендации [№1 с.251] выполним червячное колесо составным. Венец и центр литые: венец – бронза, центр – чугун СЧ15-32.
Соединение венца с центром осуществляется отливкой венца в литейную форму, в которой заранее установлен чугунный центр колеса.
Силы, действующие в зацеплении червячной передачи.
Fа – осевая сила, Ft – окружная сила, Fr – радиальная сила, Т1 – вращающий момент на червяке, Т2 – вращающий момент на червячном колесе.
Окружная сила на червяке (Ft1) , численно равная осевой силе на червячном колесе (Fa2):
(№3 с.182)
(Н)
Осевая сила на червяке(Fa1), численно равная окружной силе на червячном колесе(Ft2):
(№3 с182)
(Н)
Радиальная сила(Fr), раздвигающая червяк и червячное колесо:
[№3 182] , где a – угол профиля витка червяка в осевом сечении: [№3 с.178]
(Н)
Проверка червяка на прочность и жесткость.
При проверочном расчете тело червяка рассматривают как цилиндрический брус круглого сечения, лежащий на двух опорах и работающий на изгиб и кручение:
Где: Fа – осевая сила, Ft – окружная сила, Fr – радиальная сила, Т1 – вращающий момент, – расстояние между опорами, по рекомендации [№3 с.187] принимаем = (0,8…1,0)d2 , тогда =560мм.
[№3 с.187]
(Нм)
[№3 с.187] (Нм)
[№3 с.187] (Нм)
Из эпюр изгибающих моментов видно, что опасным будет сечение в середине пролета, и что результирующий изгибающий момент в этом сечении равен:
[№3 с.186]
(Нм)
Максимальные напряжения изгиба:
[№3 с186] (Па) = 10,53 МПа
Максимальные напряжения кручения:
[№3 с.186] (Па) =1,03(МПа)
Условие прочности:
[№3 с186], где = 45…60(МПа) – допускаемое напряжение изгиба для стального червяка [№3 с.186]
(МПа)
Т.к. =45…60 (МПа) >=10,68(МПа) – условие выполняется.
Максимальный изгиб (стрела прогиба): [№3 с.187],
где - равнодействующая окружной и радиальной силы [№3 с.187],
(Н)
- осевой момент инерции червяка [№3 с.187]
(Н*мм)
Е – модуль продольной упругости материала червяка, для стали 45х, закаленной до твердости Н=45HRCэ (МПа) [№1 с.87].
(мм)
Условие жесткости червяка:
[№4 ф. 1.56]
(мм)
Т.к. - условие выполняется.
Предварительный расчет валов.
а) Тихоходный вал.
По рекомендации $12.2 [№3 с.225], для компенсации напряжений изгиба и других неучтенных факторов принимаем для расчета значительно пониженные значения допустимых напряжений кручения. Т.о. диаметр вала определится из условия прочности:
[№4 с.53 ф.3.22], где Т – крутящий момент на валу,
- допускаемое напряжение на кручение.
По рекомендации [№3 с.225] принимаем материал выходного вала редуктора сталь 45, тогда
(МПа) [№4 с.53]
Полученное значение округляем до ближайшего стандартного значения из ряда Rа40 [№3 с.226] , тогда
(мм) – диаметр вала в месте посадки подшипника,
(мм) - диаметр вала в месте посадки шестерни,
(мм) - диаметр вала в месте посадки звездочки.
Определим длину ступицы:
[№4 с.53]
(мм),
принимаем (мм)
По рекомендации [№4 с.53] предварительно принимаем длину выходного конца тихоходного вала
(мм),
расстояние между точками приложения реакции подшипников тихоходного вала
(мм).
Выполним упрощенный проверочный расчет(рекомендации [№3 с.229]) по формулам:
[№3 с.228]
[№3 с.228]
[№3 с.227]
[№3 с.228]
Из предыдущих расчетов имеем:
окружная сила – (H)
осевая сила – (H)
радиальная сила – (H)
Т2=3804,52 (Н*м)
a1=а2=120 (мм)
d2=560(мм)
(Н*м)
(Н*м)
(Н*м)
Приняв по табл.12.1 [№3 с.229] допускаемое напряжение (МПа)
Т.к. в вместе посадки шестерни на валу будет шпоночный паз то увеличив расчетный диаметр на 10% , в результате получим dp=95(мм).
Сравнивая расчетный диаметр вала с принятым:
видим, что сопротивление усталости вала обеспечено со значительным запасом.
б) Определим размеры быстроходного вала (червяка).
Из предыдущих расчетов имеем:
расстояние между центрами приложения реакции опор подшипников
диаметр впадин
Для увеличения прочности вала примем, что червяк изготовлен как одно целое валом [№3 с.232].
Т.о. ,
диаметр вала вместе посадки подшипников
По рекомендации [№4 с.54] принимаем диаметр выходного вала червяка равным 0,8…1,2 диаметра вала электродвигателя [№5, табл. 22.4, стр.38], т.е.
Длину выходного вала примем .
По табл. 9.2 [№2 с.203] назначаем 8 – ю степень точности.
Эскизная компоновка и предварительные размеры.
После определения размеров основных деталей выполним эскизную компоновку редуктора. Червяк и червячное колесо располагаем симметрично относительно опор и определяем соответствующие длины.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; .
По рекомендации [№1 с.380] :
1) принимаем диаметр вала под уплотнения для подшипников:
быстроходного - ; тихоходного - ;
2) зазор между колесом (и другими деталями) и корпусом:
[№1 с.380] , принимаем
3) ширину подшипников предварительно принимаем равной их диаметру [№1 с.380], т.е. и .
Подбор подшипников.
Для вала червячного колеса предварительно примем роликовый конический подшипник легкой серии 7219 ГОСТ333 – 71 с размерами:
; ; ; ; ; ; [№4 табл.5.34], рабочая температура
Из предыдущих расчетов имеем:
(H), (H), (H), , , .
По рекомендации $13.4 [№3 с.246] проверку подшипников только по динамической грузоподъемности, по условию , где - требуемая величина грузоподъёмности; - динамическая грузоподъемность подшипника (из таблицы).
[№3 с.246], где Р – эквивалентная динамическая нагрузка: [№3 с.247].
Определим коэффициент [№2 т.16.5].
При коэффициенте вращения V=1 [№2 прим. к ф.16.29] получим
Из табл.16.5 [№2 с.335] находим коэффициенты радиальной и осевой нагрузок: ;
По рекомендации к формуле 16,29 [№2 с.335]:
коэффициент безопасности (умеренные толчки);
температурный коэффициент (до ).
Тогда (Н)
Т.к. - обеспечен значительный запас прочности подшипниковых узлов вала червячного колеса.
Для вала червяка предварительно примем роликовый конический подшипник легкой серии 7220 ГОСТ333 – 71 с размерами:
; ; ; ; ; ; [№4 табл.5.34], рабочая температура
Из предыдущих расчетов имеем:
(H), (H), (H), , , .
По рекомендации $13.4 [№3 с.246] проверку подшипников только по динамической грузоподъемности, по условию , где - требуемая величина грузоподъёмности; - динамическая грузоподъемность подшипника (из таблицы).
[№3 с.246], где Р – эквивалентная динамическая нагрузка: [№3 с.247].
Определим коэффициент [№2 т.16.5].
При коэффициенте вращения V=1 [№2 прим. к ф.16.29] получим
Из табл.16.5 [№2 с.335] находим коэффициенты радиальной и осевой нагрузок: ;
По рекомендации к формуле 16,29 [№2 с.335]:
коэффициент безопасности (умеренные толчки);
температурный коэффициент (до ).
Тогда (Н)
Т.к. - обеспечен значительный запас прочности подшипниковых узлов вала червяка.
Подбор шпонок и проверочный расчет
шпоночного соединения.
Для выходного конца быстроходного вала d1вых =70(мм), передающего вращающий момент Т1=246,98(Н*м).
По табл. 4.1 [№4 с.78] выбираем призматическую шпонку со скругленными концами (исполнение А):
b=20(мм) – ширина шпонки,
h=12(мм) – высота шпонки,
t1=7,5(мм) – глубина паза на валу,
t2=4,9(мм) – глубина паза на муфте.
Радиус закругления пазов 0,3<r<0,5(мм) (интерполяция)
Учитывая длину вала и предполагаемую длину ступицы муфты = 130(мм), принимаем по СТ СЭВ 189 – 75 [№4 с.78] длину шпонки (мм).
Расчетная длина шпонки [№3 с.55]
(мм)
Принимая материал шпонки сталь 45 с пределом текучести [№3 с.57], а допускаемый коэффициент запаса прочности [s]=2,3 (нагрузка постоянная нереверсивная) [№3 с.56],
определим допускаемое напряжение [№3 с.57],
(МПа)
Проверим соединение на смятие:
[№3 с.56],
(МПа).
Т.к. [№3 с.55] – прочность шпоночного соединения обеспечена.
Напряжение среза [№3 с.55], где - площадь среза шпонки:
(МПа)
Т.к. [№3 с.57] – прочность шпоночного соединения обеспечена.
Для вала под ступицу червячного колеса d2ш =100 (мм), передающего вращающий момент Т2=3804,52(Н*м), (мм).
По табл. 4.1 [№4 с.78] выбираем призматическую шпонку со скругленными концами (исполнение А):
b=28(мм); h=16(мм); t1=10(мм); t2=6,4(мм); 0,4<r<0,6(мм); (мм);
(мм)
(МПа).
Т.к. – условие выполняется.
(МПа)
Т.к. – прочность шпоночного соединения обеспечена.
Для выходного конца тихоходного вала d2ЗВ =90 (мм), передающего вращающий момент Т2=3804,52(Н*м).
Учитывая длину вала и предполагаемую длину ступицы ведущей звездочки = 130(мм): шпонка призматическая со скрученными концами, исполнение А:
b=25(мм); h=14(мм); t1=9(мм); t2=5,4(мм); 0,4<r<0,6(мм); (мм);
(мм)
(МПа).
Т.к. – условие выполняется.
(МПа)
Т.к. – прочность шпоночного соединения обеспечена.
Конструирование корпуса. Выбор арматуры. Компоновка редуктора.
1. Для удобства сборки редуктора корпус выполняем разъемным; плоскость разъема совмещена со средней плоскостью колеса. Корпус и крышка литые из серого чугуна СЧ 15-32. При несущих корпусе и крышке корпуса толщины их стенок одинаковые. Расчетная толщина стенки
[№1 с.384]
(мм)
Принимаем (мм)
2. Диаметр фундаментных болтов
[№1 с.384]
(мм)
Принимаем (мм)
Для уменьшения габаритов и веса редуктора крышку и корпус соединяем шпильками, ввернутыми в корпус. Диаметры шпилек:
у подшипников
[№1 с.384]
(мм)
для соединения крышки с корпусом
[№1 с.384]
(мм)
Крышки подшипников при диаметрах гнезд 180 и 170 мм прикреплены каждая шестью болтами диаметром (мм)[№4 с.167].
Для снятия крышки корпуса предусмотрен отжимной болт.
Болты, шпильки и установочные штифты располагаем так, чтобы между ними (или соответствующими отверстиями для них) и ближайшей свободной поверхностью или отверстием оставалось тело толщиной не менее
[№1 с.384] где — диаметр соответствующей детали;
оси этих деталей должны располагаться на расстояниях [№1 с.384] от ближайшего отверстия или поверхности. Кроме того, должна быть обеспечена возможность поворота гаечного ключа.
(мм)
(мм)
(мм)
(мм)
(мм)
(мм)
(мм)
(мм)
3. В принятой схеме редуктора подшипники червячного колеса и червяка находятся в верхнем положении.
При такой конструкции редуктора подшипники смазываются консистентной смазкой через пресс-масленки, а так же масляным туманом, образующимся в процессе работы [№6 с.348].
4. При небольших габаритах редуктора для контроля уровня масла применен жезловой маслоуказатель, ввернутый в стенку корпуса.
5. Компоновку и недостающие размеры рассчитываем по рекомендациям [№1 с.261].
Компоновка узла червячного колеса.
1. Определяем все конструктивные размеры зубчатого венца и ступицы колеса и наносим их на чертеж по рекомендации [№1 с.261].
2. Вычерчиваем подшипники вала колеса.
3. Определяем размеры подшипниковых гнезд, крышек подшипников, уплотнений и наносим эти детали на чертеж.
4. Определяем толщину поясов, высоту бобышек для шпилек и проводим наружный контур корпуса.
Форму и размеры основания корпуса определяем конструктивно в зависимости от положения редуктора и способа его крепления к фундаменту.
Компоновка узла червячного вала.
1. Размещаем подшипники в соответствии с выбранным расстоянием между ними.
2. Определяем размеры гнезд под подшипники, крышек подшипников и уплотнений и все эти детали наносим на чертеж.
3. Обводим внутренний контур корпуса.
4. Проводим наружный контур корпуса на проекции.
Смазка зацепления и подшипников.
1. Зацепление смазывается окунанием червячного колеса в масляную ванну. Глубина окунания – 1/3 радиуса колеса [№6 с.349]. При скорости скольжения (м/сек) по табл. 11.10 [№1 с.275] рекомендуемая вязкость масла (сст) (интерполяция).
По табл. 11.11 [№1 с.275]выбираем масло автотракторное АК - 15
2. Смазка подшипников - консистентная и масляным туманом, образующимся в процессе работы [№6 с.348]. Для конических роликоподшипников при рабочей температуре < 110° С по табл. 11.11[№1 с.277] выбираем смазку ЦИАТИМ-201.
Тепловой расчет редуктора.
Получив предварительно размеры корпуса, производим тепловой расчет редуктора. Для увеличения поверхности охлаждения корпус редуктора сделан ребристым. При данной конструкции корпуса обеспечивается достаточно хорошая циркуляция воздуха и можно принять коэффициент теплопередачи [№1 с.386]. Площадь поверхности ребер Fр Общая площадь поверхности охлаждения редуктора F' = F + 0,5* Fр[№1 с.387]. Площадь поверхности редуктора (без учета днища) F. Тогда F'=3,1+0,5*0,5=3,35(кв.м). При температуре окружающей среды , температура масла:
[№1 с.386]
- что допустимо.
Посадки основных деталей.
1. Согласно табл. 11.13 [№1 с.279] выбираем легкопрессовую посадку червячного колеса на вал
2. При вращающихся валах и неподвижном корпусе, в соответствии с табл. 9.7 и 9.8 [№1 с.206-207], выбираем посадки подшипников: на валы — напряженную подшипниковую (Нп), в корпус — скользящую подшипниковую (Сп).
Список использованной литературы.
1. Г.М. Ицкович и др. Курсовое проектирование деталей машин. – М.: «Машиностроение», -1970г.
2. М.Н.Иванов и др. Детали машин. – М.: Высшая школа,- 1991г.
3. А.А.Эрдели, Н.А.Эрдели. Детали машин. – М.: Высшая школа,- 2002г.
4. А.В. Кузьмин и др. Курсовое проектирование деталей машин. – Мн.: «Вышэйшая школа»,-1982г.
5. Владимирский электромоторный завод: технический каталог - 2003г.,www.vemp.ru
6. В.Н. Кудрявцев и др. Курсовое проектирование деталей машин. – Ленинград.: «Машиностроение», - 1984г.
Страницы: 1, 2