1. Производительность станка.
2. Себестоимость операции.
3. Себестоимость расходов по режущему инструменту.
4. Погрешность размеров.
5. Качество обработанной поверхности.
6. Стойкость режущего инструмента.
1.4. Формулировка цели оптимизации.
Кратко цель оптимизации состоит в достижении минимального или максимального значения выбранного критерия оптимизации. Развернуто цель оптимизации формулируется, как выбор таких условий ведения процесса (способ обработки, станок, инструмент, СОТС, режим) при которых достигается минимальная себестоимость или максимальная производительность при выполнении заданных технических условий на операцию (погрешность, качество).
2. Физические основы оптимизации.
Возможность оптимизации предопределяется характером влияния условий процесса резания и прежде всего элементов режима на силы, контактную температуру, износ и стойкость инструмента, что в конечном итоге влияет на производительность и себестоимость, а также на погрешности и качество.
2.1. Зависимость стойкости от скорости резания.
Ф.Тейлор в 1905г. установил зависимость:
где Ст - константа, зависящая от физико-механических свойств
обрабатываемого и инструментального материалов и условий обработки.
V - Скорость резания. - показатель степени, определяющий величину влияния скорости на стойкость.
Зависимость (1) приближенно отражает некоторый диапазон изменения скорости резания. В этом легко убедиться, сравнивая формулу с экспериментальными значениями
µ- - показатель степени, определяющий величину влияния скорости на стойкость.
Зависимость (1) приближенно отражает некоторый диапазон изменения скорости резания. В этом легко убедиться, сравнивая формулу с экспериментальными данными (рис. 2).
Сложный (неоднозначный) характер зависимости стойкости от скорости приближенно отражает формула Темчина Г.И.:
(2)
где: т - предельное значение стойкости при изменении скорости резания в широком диапазоне, исключая микроскорости. Значения т приведены в таблице №1.
2.2. Зависимость стойкости от подачи, глубины резания.
Влияние элементов режима резания на стойкость выражается формулой:
(3)
где: S - подача.
T - глубина резания.
У - показатель степени, определяющий величину влияния подачи на Т.
Х - показатель степени, определяющий величину влияния глубины на Т.
К - поправочный коэффициент, численно равный произведению ряда
коэффициентов, учитывающих конкретные условия процесса резания в отличии от тех, которые учтены коэффициентом Ст.
KТ = КжКиКмКпКсККК… …К
Где Кж......Ка - коэффициенты, учитывающие соответственно влияние жесткости системы, инструментального материала, состояние поверхностного слоя, обрабатываемого материала, СОТС, главного переднего угла, угла в плане, угла наклона главной режущей кромки, главного заднего угла. Необходимо учитывать, что Т>УТ>ХТ. Последнее соотношение свидетельствует, что наибольшее влияние на стойкость оказывает скорость резания, наименьшее - подача. Это можно объяснить влиянием режима резания на температуру .
2.3. Влияние стойкости на производительность и себестоимость.
Экспериментально установлено, что производительность станка - Qс, себестоимость операции - Со, себестоимость расходов по режущему инструменту -Sи существенно и неоднозначно зависят от стойкости. Эта зависимость выражается графиками
ТQ=тах, стойкость, при которой производительность станка - максимальная.
Тс=min, стойкость инструмента, при которой себестоимость операции - минимальная.
TS=min, стойкость инструмента, при которой себестоимость расходов по режущему инструменту - минимальная.
ТQ=тах, Тс=min, TS=min - оптимальные величины.
Таким образом, задача оптимизации сводится к тому, чтобы для заданных и выбранных условий назначить режим резания, при котором действительная стойкость инструмента была бы равна либо ТQ=тах (критерий оптимизации -производительность), либо Тс=min (критерий оптимизации - себестоимость операции), либо , TS=min (критерий оптимизации - себестоимость расходов по режущему инструменту).
3. Критерии оптимизации.
3.1. производительность металлорежущего станка.
Производительность металлорежущего станка Q рассчитывается по формуле
QC = (5)
где: Fд - действительный фонд времени работы станка.
tц - цикловое (повторяющееся) время при выполнении операции.
tц = tм + tин + tв (6)
где: tм - машинное время операции (время, когда инструмент для
выполнения данной операции перемещается с рабочей подачей).
tин - время простоя станка из-за замены затупившегося инструмента, отнесенное к одной операции.
tв - вспомогательное время операции.
(7)
где: - общее время простоя станка, связанное с заменой затупившегося инструмента.
Z - количество операций, выполняемых за период стойкости - Т.
(8)
где: tр- время резания.
(9)
где: - коэффициент времени резания.
(10)
Подставляя в формулу (5) значения tц (6) с учетом tин (7), Z (8), tр (9), получим:
(11)
Формула (11) применима для одноинструментальной обработки. Если операция выполняется на многоинструментальном станке с участием К инструментов, то
(12)
3.2.Себестоимость операции.
При известной величине себестоимости станкоминуты работы станка - Е себестоимость операции - Со определяется по формулам: для одноинструментальной обработки:
(13)
для многоинструментальной обработки:
(14)
где: Sи - себестоимость расходов по режущему инструменту на одну операцию.
Sм - затраты на материал заготовки.
3.3. Себестоимость затрат по режущему инструменту.
Для расчета Sи необходимо знать величину расходов по режущему инструменту за период стойкости ST.
(15)
где: A - первоначальная стоимость инструмента.
а - стоимость отходов инструмента.
p - количество переточек до полного износа.
Ез - себестоимость станкоминуты заточного станка.
t. - штучное время на переточку инструмента.
- тарифная ставка наладчика.
tн - время наладчика на замену инструмента.
Формула (15) применима для перетачиваемого инструмента. При использовании неперетачиваемого инструмента для расчета 8т рекомендуется формула:
(16)
где: Кк - количество кромок режущей пластины.
Величина Sи рассчитывается по формуле:
(17)
3.4. Выбор критерия оптимизации.
На рис.3 изображены зависимости (Qс, Со, Sи, от скорости резания, которые являются зеркально отображенными зависимостям (см.рис.З). Это естественно, поскольку между скоростью и стойкостью взаимосвязь выражается согласно (2,1), Как видно из графиков скорость резания, при которой производительность максимальная VQ = тах, не равна скорости резания, при которой себестоимость минимальная – Vc =min.
Если фактическая скорость окажется меньше VC=min, то как и в предыдущем случае будут потери и по производительности, и по себестоимости операции.
Если фактическая скорость резания -Vф окажется между VQ=тах и VC=min, то тогда при критерии оптимизации по Qс уменьшается производительность, но при этом уменьшается себестоимость операции (своего рода компенсация за потери производительности). При критерии оптимизации Со, если V между VQ=тах и VC=min - себестоимость увеличивается, но при этом производительность растет (аналогичная компенсация за потери в себестоимости). Такой характер зависимости Qс, Со от V позволяет сформулировать следующий подход к выбору критерия оптимизации и установлению фактической скорости резания.
Если критерий оптимизации задан - Qс, то V должна быть несколько меньше VQ=тах (с учетом погрешности установки числа оборотов, дискретности чисел оборотов). Если критерий оптимизации - Со, то V должна быть несколько больше VC=min.
Если выбор критерия Qс или Со затруднен за расчетную оптимальную скорость следует принять среднюю между VQ=тах и VC=min.
4.Назначение и расчет режима резания.
4.1. Способы назначения режима резания.
С учетом вида производства (индивидуальное, серийное, массовое), его состояния и целей используются следующие способы назначения элементов режима резания:
1. Интуитивный
2. По усредненным таблицам
3. По нормативам (справочникам)
4. Опытный
5. Теоретический
6. С помощью информационных центров по режимам резания
7. Расчетный для оптимальной скорости резания
Режимы резания при обработке твердым сплавом.
Таблица 1.
№
Группа металлов
Средний уровень скоростей резания
Коэффициент относительной обрабатываемости
1
2
3
4
1
Магниевые сплавы
1000м/мш
10
2
Медные и алюминиевые сплавы (бронзы и дюралюмины)
500м/мин
5
3
Чугуны серые и ковкие, стали конструкционные
100м/мин
1
4
Жаропрочные и коррозионно-устойчивые аустенитные хромоникелевые стали
50м/мин
0,5
5
Жаростойкие и жаропрочные хромоникелевые сплавы
10м/мин
0,1
6
Антимагнитные и маломагнитные высокопрочные марганцовистые и хромомаргонцовистые стали
50м/мин
0,5
7