Разработка методики расчета межкаскадной корректирующей цепи усилителя на мощных полевых транзистора...

По известным коэффициентам функции (3.2), коэффициенты функции (3.1) определяются с помощью следующего алгоритма [43]:

1.           В функции (3.2) осуществляется замена переменной , и вычисляются нули полиномов числителя и знаменателя.

2.           Каждый из полиномов числителя и знаменателя представляется в виде произведения двух полиномов, один из которых должен быть полиномом Гурвица.

3.           Отношение полиномов Гурвица числителя и знаменателя является искомой функцией (3.1).

Многократное решение системы линейных неравенств (3.4) для различных  и , расчет векторов коэффициентов  и вычисление нормированных значений элементов рассматриваемой МКЦ позволяют осуществить синтез таблиц нормированных значений элементов МКЦ, по которым ведется проектирование усилителей.

3.2 Вывод аналитического выражения для описания коэффициента передачи каскада с МКЦ


Воспользовавшись вышеописанным методом расчета, произведем расчет схемы, представленной на рисунке 2.14.  Для вывода аналитического выражения коэффициента передачи каскада с МКЦ в схеме 2.6 заменим полевой транзистор его однонаправленной моделью [40]. Полученная  схема представлена на рисунке 3.1.



Рисунок 3.1. – Схема каскада с МКЦ.

В области частот удовлетворяющих условию , где - постоянная времени входной цепи ПТ, входной и выходной импедансы транзисторов могут быть аппроксимированы С и RC – цепями [40]. Элементы указанных цепочек могут быть рассчитаны по следующим соотношениям [40]:

                                            ;                                  (3.5)

                                   ;                                         (3.6) 

                                            ,                                              (3.7)    

 где - емкости затвор-исток, затвор-сток, сток-исток ПТ;

       - крутизна ПТ;

       - сопротивление нагрузки каскада.

С учетом (3.1) коэффициент передачи последовательного соединения МКЦ и транзистора, для схемы рисунка 2.14, может быть описан выражением:

                                   (3.8)

где  ;

;

;

;

.

Предполагая известными  и , выразим элементы МКЦ:

                                               ;    

       ;                                               (3.9)

                                                  .

3.3 Синтез функции-прототипа передаточной характеристики


Согласно [43] для нахождения коэффициентов  необходимо представить нормированное значение квадрата модуля передаточной характеристики (3.1) в виде (3.3). Так как полиномы числителя и знаменателя  положительны, модульные неравенства заменим простыми и записать задачу в виде (3.4). Для нашего случая это выражение  будет иметь вид:

 .                   (3.10)

Решая систему (3.10)  при условии максимизации функции цели:           В3 = max, найдем вектор коэффициентов , обеспечивающий получение максимального коэффициента усиления при заданной допустимой неравномерности АЧХ в заданном диапазоне частот.

По известным корням уравнения:

найдем коэффициенты .

Предлагаемая методика была реализована в виде программы в среде Maple V Release 4, с помощью которой получены нормированные значения элементов МКЦ для ряда значений  и . Результаты расчетов приведены в  таблице 3.1.

Таблица 3.1 – Нормированные значения элементов МКЦ.

Свхн

δ = ± 0,1

b1 = 1,562

b2 = 1,151

b3 = 0,567

C1н = 0,493

L2н = 1,077

δ = ± 0,2

b1 = 1,743

b2 = 1,381

b3 = 0,806

C1н = 0,584

L2н = 1,191

δ = ± 0,3

b1 = 1,864

b2 = 1,526

b3 = 0,992

C1н = 0,650

L2н = 1,257

C3н

C3н

C3н

1,2

9,790

34,630

–––––––

1,4

4,521

6,760

9,117

1,6

3,221

4,216

5,026

1,8

2,632

3,261

3,726

2

2,296

2,761

3,087

2,5

1,868

2,164

2,359

3

1,661

1,891

2,038

3,5

1,539

1,735

1,858

4,5

1,402

1,563

1,662

6

1,301

1,438

1,521

8

1,234

1,356

1,431

10

1,196

1,312

1,381


Свхн

 δ = ± 0,4

b1 = 1,958

b2 = 1,631

b3 = 1,152

C1н = 0,706

L2н = 1,304

δ = ± 0,5

b1 = 2,038

b2 = 1,714

b3 = 1,294

C1н = 0,755

L2н = 1,336

δ = ± 1,0

b1 = 2,345

b2 = 1,962

b3 = 1,883

C1н = 0,960

L2н = 1,417

C3н

C3н

C3н

1,4

11,870

15,328

131,302

1,6

5,763

6,471

10,320

1,8

4,116

4,465

6,012

2

3,350

3,577

4,506

2,5

2,509

2,635

3,107

3

2,150

2,241

2,574

3,5

1,950

2,025

2,292

4,5

1,735

1,794

2,001

6

1,582

1,632

1,801

8

1,485

1,528

1,645

10

1,432

1,472

1,608


Зная нормированные значения элементов МКЦ можно произвести расчет реальных элементов по следующей методике.

·        Задаем сопротивление  генератора Rг, сопротивление нагрузки Rн, верхнюю граничную частоту пропускания усилителя fв, допустимую неравномерность АЧХ δ.

·        Используя справочные данные транзистора, выбранного в качестве усилительного элемента, по выражению (3.5) находим Свх.

·        Нормируем Свх относительно fв и  Rг:

 Свхн = 2 . π. . Свх . Rг.                                            (3.11)

·        Из таблицы 3.1, в колонке с заданной неравномерностью, находим ближайшее к полученной Свхн значение Свхн.

·        Для этого значения Свхн находим С1н, С3н и L.

·        При разнормировке полученных значений элементов МКЦ находим истинные значения элементов, обеспечивающие заданную неравномерность.

·        Коэффициент усиления каскада находим по выражению:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать