Электрические параметры транзистора 2Т911А:
Коэффициент усиления по мощности при Uкэ=28В, Тк£40°С, на частоте f=1,8ГГц при Рвых=0,8Вт:
Gном1,2=2
Статический коэффициент передачи тока в схеме с ОЭ при Uкэ=5В, Iэ=200мА (типовое значение):
b=40
Граничная частота коэффициента передачи тока в схеме с ОЭ при Uкэ=12В, Iк=200мА:
fТ=3060МГц
Ёмкость коллекторного перехода при Uкб=28В:
СUкэ=4пФ
Постоянная времени цепи ОС на ВЧ при Uкб=10В, Iэ=30мА, f=5МГц:
tс=25пФ
Предельные эксплуатационные данные транзистора 2Т911А:
Средняя рассеиваемая мощность в динамическом режиме
Рк=3Вт
По всем параметрам нам подходит транзистор 2Т911А.
Подставив в формулу (2.41) справочные значения коэффициента усиления и верхней частоты транзистора, найдём максимальную частоту:
,
где fвТР – граничная частота транзистора.
Таким образом fмах=1,8×109=2,5 ГГц
Подставив в формулу (2.41) найденное значение максимальной частоты и верхнюю частоту заданной полосы, найдём усиление:
Найдём выходное сопротивление транзистора (Rвых):
Uкб=55 В, Iк=400 мА
Ом.
2.5. Расчёт предоконечного каскада
2.5.1. Расчёт рабочей точки
В данном каскаде используем транзистор КТ939, то есть такой же, как и в выходном каскаде.
Чтобы для всего усилительного каскада использовалось одно и тоже питание, рабочая точка для этого транзистора имеет такое же напряжение, но ток меньше, чем у выходного каскада в ‘коэффициент усиления конечного каскада’ раз.
Uкэ0=7 В,
мА.
Таким образом рабочая точка: Iк0=16,7 мА
Uкэ0=7 В
Эквивалентные схемы транзистора представлены в пункте 2.3.3.
2.5.2. Эмиттерная термостабилизация
Возьмём напряжение на эмиттере Uэ=3 В.
Мощность, рассеиваемая на Rэ находится по формуле (2.16):
PRэ=16,7×3=50,1 мВт.
Еп для данной схемы находится по формуле (2.17):
Еп=3+7+0=10 В.
Рассчитаем Rэ, Rб1, Rб2 в соответствии с формулами (2.18)-(2.22)
Ом,
мА,
ток базового делителя: Iд=10×Iб=1,48 мА,
Ом,
Ом.
Схема каскада с эмиттерной термостабилизацией приведена на рисунке 2.7.
Найдём Lк, исходя из условий, что на нижней частоте полосы пропускания её сопротивление много больше сопротивления нагрузки для данного транзистора. В нашем случае:
нГн.
2.5.3. Расчёт элементов ВЧ коррекции и коэффициента усиления
По таблице [5] найдём коэффициенты, соответствующие нулевому подъёму АЧХ и неравномерности ±0,5дБ
Рассчитаем нормированное значение выходной ёмкости первого транзистора (Свых1) по формулам (2.31).
Здесь нормируем относительно выходного сопротивления входного транзистора (Rвых1) и верхней частоты.
Свых1Н=Свых1×Rвых1×2pfв=5,1×10-12×137,5×2p×200×106=0,88
По формулам (2.34)-(2.39) найдём элементы коррекции:
В соответствии с (2.32) разнормируем элементы коррекции:
нГн
Ом
пФ
пФ
нГн.
Найдём коэффициент усиления предоконечного каскада по формуле (2.40), где Rвх.н – входное сопротивление предоконечного транзистора, нормированное относительно выходного сопротивления входного транзистора:
2.6. Расчёт входного каскада
2.6.1. Расчёт рабочей точки
Рабочая точка для этого транзистора имеет такое же напряжение, но ток меньше, чем у предоконечного каскада в ‘коэффициент усиления предоконечного каскада’ раз.
Uкэ0=7 В,
мА.
Таким образом рабочая точка: Iк0=2,7 мА
Uкэ0=7 В
2.6.2. Однонаправленная модель входного транзистора
а). Сначала найдём Сu кэ , чтобы найти Rб.
Так как в справочнике Сu кэ найдена при напряжении 28 В, а нам необходима при 10 В, то, используя формулу (2.8), получим:
Ф.
Теперь найдём Rб по формуле (2.9):
Ом.
Rвх=rб=1,5 Ом.
б). Найдём Rвых по формуле (2.15).
Uкб=55 В, Iк=400 мА
Ом.
в). Индуктивность входа
Lб=0,5 нГн, Lэ=0,55 нГн
Lвх= Lб+ Lэ=0,5+0,55=1,05 нГн
г). По формуле (2.8) рассчитаем выходную ёмкость
Ф.
Коэффициент усиления транзистора находится по формуле (2.14), где a0 и rэ – из (2.13) и (2.10) соответственно:
, Ом
.
Т.о. элементы однонаправленной модели:
Lвх=1,05 нГн
Rвх=1,5 Ом
Rвых=137,5 Ом
Свых=20 пФ
Однонаправленная модель приведена на рисунке 3.6.
2.6.3. Эмиттерная термостабилизация
Возьмём напряжение на эмиттере равным Uэ=3 В.
В соответствии с формулой (2.16), мощность, рассеиваемая на Rэ равна
PRэ=2,7××3=8,1 мВт.
По формулам (2.18)-(2.22) рассчитаем Rэ, Rб1, Rб2:
Ом,
мкА,
ток базового делителя: Iд=10×Iб=238 мкА,
Ом,
Ом.
Схема каскада с эмиттерной термостабилизацией приведена на рисунке 2.7.
Аналогично, как и для предыдущего каскада найдём Lк:
нГн.
2.6.4. Расчёт элементов ВЧ коррекции и коэффициента усиления
В соответствии с таблицей 9.1 [5], для нулевого подъёма и с неравномерностью АЧХ=±0,5дБ:
Здесь нормируем относительно сопротивления генератора (Rг) и верхней частоты.
Нормированные значения элементов находятся по формулам(2.34)-(2.39)
По (2.32) разнормируем элементы коррекции:
нГн
Ом
пФ
пФ
нГн.
Найдём коэффициент усиления входного каскада по формуле (2.40), но здесь Rвх.н – входное сопротивление входного транзистора, нормированное относительно сопротивления генератора:
раз=21,5дБ.
2.7. Расчёт разделительных и блокировочных конденсаторов
Найдём искажения, вносимые разделительными и блокировочными конденсаторами [4]:
дБ=1,05 раз.
Искажения, вносимые каждым конденсатором:
В общем виде:
, (2.42)
где fн – нижняя частота,R1, R2 – обвязывающие сопротивления
Рисунок 2.11 – Входной каскад с разделительными и блокировочными конденсаторами.
Рисунок 2.12 – Предоконечный каскад с разделительными и блокировочными конденсаторами.
Рисунок 2.13 –Оконечный каскад с разделительными и блокировочными конденсаторами.
Сдоп выбирается таким, что на нижней частоте её сопротивление было много меньше, чем R2, то есть:
(2.43)
В (2.43) подставим численные значения, и найдём Сдоп:
нФ,
нФ.
Найдём Rр1, Rр2, Rр3, исходя из формулы:
, (2.44)
где S210 – коэффициент усиления соответствующего транзистора,
для выходного каскада R3=Rн, а для остальных двух – R1,2=R2 соответствующего каскада.
В соответствии с (2.44):
для входного каскада:
Ом,
для оконечного:
Ом,
для выходного:
Ом,
По (2.42) найдём Ср1, Ср2, Ср3.
По заданным искажениям найдём блокировочные конденсаторы (в нашем случае Сэi), исходя из формулы:
, (2.45)
где S – крутизна соответствующего транзистора,
Rэi – сопротивление эмиттера (схема термостабилизации) для соответствующего транзистора.
Подставляя численные значения в (2.45), получим:
пФ,
нФ,
нФ.
Коэффициент усиления всего усилителя:
раз = 53,6 дБ.
3. Заключение
В результате выполненной курсовой работы получена схема электрическая принципиальная усилителя-корректора. Известны топология элементов и их номиналы. Поставленная задача решена в полном объеме, однако для практического производства устройства данных недостаточно. Необходимая информация может быть получена в результате дополнительных исследований, необходимость которых в техническом задании настоящего курсового проекта не указывается.
Таким образом, в данной курсовой работе был разработан усилитель-корректор на транзисторах КТ911А и КТ939А, имеющий следующие технические характеристики:
Полоса рабочих частот 10-200 МГц
Подъём АЧХ 5 дБ
Амплитуда выходного напряжения 5В
Коэффициент усиления 50дБ
Напряжение питания 10В
Сопротивления генератора и нагрузки 50 Ом
Список использованной литературы
1. Полупроводниковые приборы : Транзисторы. П53 Справочник / В.Л. Аронов, А.В. Баюков, А.А. Зайцев и др. Под общ. ред. Н.Н. Гарюнова. – 2-е изд., перераб. – М.: Энергоатомиздат, 1985 – 904 c., ил.
2. Мамонкин И.Г. Усилительные устройства: учебное пособие для вузов. – М.: Связь, 1977г.