Тепловые сети и потери тепловой энергии
Министерство образования Республики Беларусь
Учреждение образования
«Белорусский национальный технический университет»
РЕФЕРАТ
Дисциплина «Энергоэффективность»
на тему: «Тепловые сети. Потери тепловой энергии при передаче. Тепловая изоляция.»
Выполнил: Шрейдер Ю. А.
Группа 306325
Минск, 2006
Содержание
1. Тепловые сети. 3
2. Потери тепловой энергии при передаче. 6
2.1. Источники потерь. 7
3. Тепловая изоляция. 12
3.1. Теплоизоляционные материалы. 13
4. Список используемой литературы. 17
1. Тепловые сети.
Тепловая сеть - это система прочно и плотно соединенных между собой участников теплопроводов, по которым теплота с помощью теплоносителей (пара или горячей воды) транспортируется от источников к тепловым потребителям.
Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки, изоляционная конструкция, предназначенная для защиты трубопровода от наружной коррозии и тепловых потерь, и несущая конструкция, воспринимающая вес трубопровода и усилия, возникающие при его эксплуатации.
Наиболее ответственными элементами являются трубы, которые должны быть достаточно прочными и герметичными при максимальных давлениях и температурах теплоносителя, обладать низким коэффициентом температурных деформаций, малой шероховатостью внутренней поверхности, высоким термическим сопротивлением стенок, способствующим сохранению теплоты, неизменностью свойств материала при длительном воздействии высоких температур и давлений.
Снабжение теплотой потребителей (систем отопления, вентиляции, горячего водоснабжения и технологических процессов) состоит из трех взаимосвязанных процессов: сообщения теплоты теплоносителю, транспорта теплоносителя и использования теплового потенциала теплоносителя. Системы теплоснабжения классифицируются по следующим основным признакам: мощности, виду источника теплоты и виду теплоносителя.
По мощности системы теплоснабжения характеризуются дальностью передачи теплоты и числом потребителей. Они могут быть местными и централизованными. Местные системы теплоснабжения - это системы, в которых три основных звена объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях (печи). Централизованные системы, в которых от одного источника теплоты подается теплота для многих помещений.
По виду источника теплоты системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При системе районного теплоснабжения источником теплоты служит районная котельная, теплофикации-ТЭЦ.
По виду теплоносителя системы теплоснабжения делятся на две группы: водяные и паровые.
Теплоноситель – среда, которая передает теплоту от источника теплоты к нагревательным приборам систем отопления, вентиляции и горячего водоснабжения.
Теплоноситель получает теплоту в районной котельной (или ТЭЦ) и по наружным трубопроводам, которые носят название тепловых сетей, поступает в системы отопления, вентиляции промышленных, общественных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированной в нем теплоты и отводится по специальным трубопроводам обратно к источнику теплоты.
В водяных системах теплоснабжения теплоносителем служит вода, а в паровых - пар. В Беларуси для городов и жилых районов используются водяные системы теплоснабжения. Пар применяется на промышленных площадках для технологических целей.
Системы водяных теплопроводов могут быть однотрубными и двухтрубными(в отдельных случаях многотрубными). Наиболее распространенной является двухтрубная система теплоснабжения (по одной трубе подается горячая вода потребителю, по другой, обратной, охлажденная вода возвращается на ТЭЦ или в котельную). Различают открытую и закрытую системы теплоснабжения. В открытой системе осуществляется "непосредственный водоразбор", т.е. горячая вода из подающей сети разбирается потребителями для хозяйственных, санитарно - гигиенических нужд. При полном использовании горячей воды может быть применена однотрубная система. Для закрытой системы характерно почти полное возвращение сетевой воды на ТЭЦ (или районную котельную).
К теплоносителям систем централизованного теплоснабжения предъявляют следующие требования: санитарно- гигиенические (теплоноситель не должен ухудшать санитарные условия в закрытых помещениях - средняя температура поверхности нагревательных приборов не может превышать 70-80), технико-экономические (чтобы стоимость транспортных трубопроводов была наименьшей, масса нагревательных приборов - малой и обеспечивался минимальный расход топлива для нагрева помещений) и эксплуатационные (возможность центральной регулировки теплоотдачи систем потребления в связи с переменными температурами наружного воздуха).
Направление теплопроводов выбирается по тепловой карте района с учетом материалов геодезической съемки, плана существующих и намечаемых надземных и подземных сооружений, данных о характеристике грунтов и т. д. Вопрос о выборе типа теплопровода (надземный или подземный) решается с учетом местных условий и технико-экономических обоснований.
При высоком уровне грунтовых и внешних вод, густоте существующих подземных сооружений на трассе проектируемого теплопровода, сильно пересеченной оврагами и железнодорожными путями в большинстве случаев предпочтение отдается надземным теплопроводам. Они также чаще всего применяются на территории промышленных предприятий при совместной прокладке энергетических и технологических трубопроводов на общих эстакадах или высоких опорах.
В жилых районах из архитектурных соображений обычно применяется подземная кладка тепловых сетей. Стоит сказать, что надземные теплопроводные сети долговечны и ремонтопригодны, по сравнению с подземными. Поэтому желательно изыскание хотя бы частичного использования подземных теплопроводов.
При выборе трассы теплопровода следует руководствоваться в первую очередь условиями надежности теплоснабжения, безопасности работы обслуживающего персонала и населения, возможностью быстрой ликвидации неполадок и аварий.
В целях безопасности и надежности теплоснабжения, прокладка сетей не ведется в общих каналах с кислородопроводами, газопроводами, трубопроводами сжатого воздуха с давлением выше 1,6 МПа. При проектировании подземных теплопроводов по условиям снижения начальных затрат следует выбирать минимальное количество камер, сооружая их только в пунктах установки арматуры и приборов, нуждающихся в обслуживании. Количество требующих камер сокращается при применении сильфонных или линзовых компенсаторов, а также осевых компенсаторов с большим ходом (сдвоенных компенсаторов), естественной компенсации температурных деформаций.
На не проезжей части допускаются выступающие на поверхность земли перекрытия камер и вентиляционных шахт на высоту 0,4 м. Для облегчения опорожнения (дренажа) теплопроводов, их прокладывают с уклоном к горизонту. Для защиты паропровода от попадания конденсата из конденсатопровода в период остановки паропровода или падения давления пара после конденсатоотводчиков должны устанавливаться обратные клапаны или затворы.
По трассе тепловых сетей строится продольный профиль, на который наносят планировочные и существующие отметки земли, уровень стояния грунтовых вод, существующие и проектируемые подземные коммуникации, и другие сооружения пересекаемые теплопроводом, с указанием вертикальных отметок этих сооружений.
2. Потери тепловой энергии при передаче.
Для оценки эффективности работы любой системы, в том числе теплоэнергетической, обычно используется обобщенный физический показатель, - коэффициент полезного действия (КПД). Физический смысл КПД - отношение величины полученной полезной работы (энергии) к затраченной. Последняя, в свою очередь, представляет собой сумму полученной полезной работы (энергии) и потерь, возникающих в системных процессах. Таким образом, увеличения КПД системы (а значит и повышения ее экономичности) можно достигнуть только снижением величины непроизводительных потерь, возникающих в процессе работы. Это и является главной задачей энергосбережения.
Основной же проблемой, возникающей при решении этой задачи, является выявление наиболее крупных составляющих этих потерь и выбор оптимального технологического решения, позволяющего значительно снизить их влияние на величину КПД. Причем каждый конкретный объект (цель энергосбережения) имеет ряд характерных конструктивных особенностей и составляющие его тепловых потерь различны по величине. И всякий раз, когда речь заходит о повышении экономичности работы теплоэнергетического оборудования (например, системы отопления), перед принятием решения в пользу использования какого-нибудь технологического новшества, необходимо обязательно провести детальное обследование самой системы и выявить наиболее существенные каналы потерь энергии. Разумным решением будет использование только таких технологий, которые существенно снизят наиболее крупные непроизводительные составляющие потерь энергии в системе и при минимальных затратах значительно повысят эффективность ее работы.
2.1 Источники потерь.
Любую теплоэнергетическую систему с целью анализа можно условно разбить на три основные участка:
1. участок производства тепловой энергии (котельная);
2. участок транспортировки тепловой энергии потребителю (трубопроводы тепловых сетей);
3. участок потребления тепловой энергии (отапливаемый объект).
Каждый из приведенных участков обладает характерными непроизводительными потерями, снижение которых и является основной функцией энергосбережения. Рассмотрим каждый участок в отдельности.
1.Участок производства тепловой энергии. Существующая котельная.
Главным звеном на этом участке является котлоагрегат, функциями которого является преобразование химической энергии топлива в тепловую и передача этой энергии теплоносителю. В котлоагрегате происходит ряд физико-химических процессов, каждый из которых имеет свой КПД. И любой котлоагрегат, каким бы совершенным он не был, обязательно теряет часть энергии топлива в этих процессах. Упрощенно схема этих процессов изображена на рисунке.
Страницы: 1, 2