Термическая обработка материала для изготовления кернера

Значение твёрдости в единицах НRС примерно в 10 раз меньше, чем в единицах НВ, то есть твёрдость 30 НRС примерно соответствует 300 НВ. Между значениями твёрдости по шкалам «С» и «А» имеется следующая зависимость: НRС = 2 НRА -104 [1, с. 36].

Рис. 3

Испытания на прокаливаемость


Под прокаливаемость подразумевают глубину проникновения закалённой зоны [3, с. 293].

Для определения прокаливаемсти применяют метод торцевой закалки. Стандартный образец (рис. 4) диаметром 25 мм и длинной 100 мм, нагретый до заданной температуры, охлаждается с торца на специальной установке (рис. 5); так как скорость охлаждения уменьшается по мере увеличения расстояния от торца, то изменяется структура и твёрдость образца.

                                 

               Рис. 4                                                                Рис. 5

Изменение твёрдости по длине образца показывают на кривых прокаливаемости (рис. 6) построенных в координатах «твёрдость - расстояние» от торца.

Рис. 6. Кривая прокаливаемости (сталь с 0,4 % С)

Так как прокаливаемость одной и той же стали может колебаться в широких пределах в зависимости от колебаний химического состава и величины зерна, то прокаливаемость каждой марки стали характеризуется не кривой, а полосой прокаливаемости (рис. 7).

Рис. 7

Определив с помощью полосы прокаливаемости расстояние от торца до полумартенситной зоны данной марки стали, по номограмме (рис. 8) можно определить критический диаметр, то есть максимальный диаметр цилиндрического прутка, который прокаливается насквозь в данном охладителе.

Рис. 8

Углеродистые стали при закалке в воде имеют критический диаметр 10 - 20 мм [1, с. 78].


Определение ударной вязкости


Испытания на ударную вязкость относятся к динамическим. Для определения ударной вязкости используют образцы с надрезом, который служит концентратором напряжений. Используют U- и V- образные образцы (рис. 9). В зависимости от формы надреза ударную вязкость обозначают  KCU или KCV.

Рис. 9

Образец устанавливают на маятниковом копре (рис. 10), так чтобы удар маятника происходил против надреза, раскрывая его.

Рис. 10

Маятник поднимают на высоту h1, при падении он разрушает образец, поднимаясь на высоту h2, h1 > h2. Таким образом, работа разрушения составит: A = mg *(h1 - h2) кДж [кгс*м]. Её значение считываются со шкалы, установленной на маятниковом копре [1, с. 38].

Ударная вязкость - это относительная работа разрушения, то есть работа, отнесённая к площади F образца до разрушения. Таким образом, KCU(KCV) = A/ F.

Разрушение металла при ударной нагрузке развивается в две стадии. На первой зарождается трещина, на второй она распространяется до разрушения образца. Таким образом, суммарная величина работы разрушения складывается из двух составляющих - работы по зарождению (Аз) и распространению (Ар) трещины. Эти составляющие зависят от структуры материала. Надёжность материала определяется работой распространения трещины. У хрупких материалов величина Ар близка к нулю.

У многих металлов и сплавов (имеющих объемно-центрированную кубическую и гексагональную решётки) с понижением температуры наблюдается переход от вязкого разрушения к хрупкому, проявляющийся в снижении ударной вязкости и изменении характера излома. Температурный интервал изменения характера разрушения называется порогом хладноломкости [1, с. 39].

Испытания проводят при разных температурах, при каждой температуре анализируют вид излома и определяют в нём количество волокнистой составляющей.

По результатам испытаний строят график (рис. 11)

Рис. 11

Различают верхнюю Тв и нижнюю Тн границы порога хладноломкости. В этом интервале температур происходит переход от вязкого волокнистого излома к хрупкому кристаллическому. Часто порог хладноломкости определяют по температуре испытания, при которой в изломе имеется 50% вязкой волокнистой составляющей Т50 [1, с. 39].

Желательно эксплуатировать материал выше Тв. Разница между Траб. и Тв называют запасом вязкости.


Испытание на растяжение

Прочность, упругость, пластичность определяются при испытаниях на растяжение. Для проведения испытания изготовляют образцы плоской или круглой формы. Испытания выполняют на разрывных машинах различных конструкций. Головки образцов помещают в зажимы разрывной машины, и образцы растягивают до разрушения. По результатам испытаний машина записывает диаграмму растяжения    (рис. 12).

Рис. 12

предел пропорциональности (максимальное напряжение, которое выдерживает образец, не теряя своих упругих свойств), точка А;

предел упругости (напряжение, при котором величина остаточной деформации равна 0.05%);

предел текучести (напряжение, которое вызывает остаточную деформацию 0.2%), участок Б-Г;

предел прочности (максимальное напряжение, которое выдержал образец во время испытания), точка Д.

После того, как усилие достигнет максимального значения, в образце появится шейка, в этом месте в дальнейшем и произойдет разрушение.


Испытание на жидкотекучесть

Жидкотекучестью называется  способность металлов и сплавов течь в расплавленном состоянии по каналам литейной формы, заполнять её полости и чётко воспроизводить контуры отливки [4, с. 122].

Жидкотекучесть литейных сплавов зависит от температурного интервала кристаллизации, вязкости и поверхностного натяжения расплава, температуры заливки и формы, свойств литейной формы и т.д.

Жидкотекучесть литейных сплавов определяют путём заливки специальных технологических проб (рис. 13).

Рис. 13. Спиральная проба (а) и литейная форма (б) для определения жидкотекучести сплавов

Расплавленный металл заливают в чашу, отверстие в которой закрыто графитовой пробкой. После подъёма пробки металл сначала сливается в зумпф, а затем плавно заполняет спираль. За меру жидкотекучести принимают длину заполненной части спирали, измеряемую в миллиметрах [4, с. 123].


Испытание на обрабатываемость резанием

Обрабатываемость оценивают рядом показателей: производительностью обработки, качеством обработанной поверхности, видом образующейся стружки. В зависимости от конкретных условий решающим может оказаться любой из критериев [1, с. 49].

Наиболее распространённой является оценка обрабатываемости материала по производительности. Она оценивается скоростью резания, при которой достигается заранее заданная стойкость инструмента. Используют критерий «V60» - это скорость резания (м/мин), при которой достигается 60 - минутная стойкость режущего инструмента до регламентируемого износа.

Производительность обработки тем ниже, чем выше твёрдость и прочность обрабатываемого материала. Кроме того, обрабатываемость зависит от структуры - наличие твёрдых частиц в структуре снижает обрабатываемость материала.

Шероховатость обработанной поверхности зависит главным образом от твёрдости материала - более высокая твёрдость обеспечивает меньшую шероховатость, т.е. лучшее качество поверхности.

Элементная, «сыпучая» стружка образуется в том случае, если в структуре присутствует фаза, обладающая малой прочностью (графит в чугуне) [1, с. 50].


Испытание на общую коррозию

Для характеристики химических свойств металла в зависимости от состава, структуры и обработки определяют, прежде всего, их стойкость против коррозии [2, с. 157].

При испытании на общую коррозию используется несколько методов: в жидкости при полном погружении образца; в жидкости при переменном многократно повторяемом погружении; в парах; в кипящем соляном растворе; в окружающей атмосфере в лабораторных условиях. Состав жидкости, паров или растворов, выбирают с учётом намечаемого использования металла. Для испытания применяют образцы с большим отношением поверхности к объёму.

Полученные результаты оценивают количественно, чаще по скорости коррозии, характеризуемой потерей массы в течении определённого промежутка времени, отнесённой к единице поверхности. По скорости коррозии определяют также величину проникновения коррозии                  П = (К/γ)10-3 мм/год , где К - скорость коррозии, г/м2 год; γ - плотность металла, г/см3. Эта оценка приемлема только в случае однородного коррозионного воздействия. При проявлении локальных нарушений такой метод оценки неприемлем.

Наряду с определением изменения массы образца и глубины коррозии выполняют визуальное (или под микроскопом) наблюдение поверхности образцов. Это позволяет определить стойкость против точечной коррозии. В этом случае измеряют плотность (количество коррозионных точек на единицу поверхности) и глубину точек. Микроисследования позволяют обнаружить возникновение очень малых точек и начало коррозии.

Другим показателем развития коррозии является изменение механических свойств образцов. Общая коррозия, приводящая к уменьшению сечения, сопровождается снижением разрушающей нагрузки. В результате точечной коррозии снижается также и пластичность (относительное удлинение). Коррозионная стойкость металла оценивают по шкале (табл. 2). Меньшим баллом характеризуют более стойкие металлы [2, с. 158].

Таблица 2

Оценка стойкости против коррозии

Балл стойкости

Стойкость, мм/год

Категория  стойкости

1

< 0,10

Сильностойкие

2

0,10 - 1,0

Стойкие

3

1,10 - 3,0

Пониженностойкие

4

3,10 - 10,0

Малостойкие

5

10,1

Нестойкие

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать