(3.36)
Таким образом, задание термодинамического потенциала в макроскопической теории возможно только на основе использования заданных уравнений термодинамического состояния, которые в свою очередь, сами получаются на основе задания термодинамических потенциалов. Разорвать этот “замкнутый круг” можно только на основе микроскопической теории, в которой состояние системы задается на основе функций распределения с учетом статистических особенностей.
3.
Обобщим полученные результаты на случай многокомпонентных систем. Это обобщение осуществляется путем замены параметра множеством . Рассмотрим сказанное на конкретных примерах.
Положим, что термодинамическое состояние системы задано параметрами , т.е. мы рассматриваем систему в термостате, состоящую из нескольких компонентов, число частиц в которых равно Свободная энергия, являющаяся в этом описании термодинамическим потенциалом, имеет вид:
(3.37)
В качестве аддитивного параметра в (3.37) введены не число частиц, а объем системы V. Тогда через обозначена плотность системы. Функция является неаддитивной функцией неаддитивных аргументов. Это достаточно удобно, поскольку при разбиении системы на части функция не изменится для каждой части.
Тогда для параметров термодинамической системы можно записать:
Учитывая, что имеем
(3.38)
Для химического потенциала отдельного компонента запишем:
(3.39)
Существуют и другие способы учета аддитивных свойств свободной энергии. Введем относительные плотности чисел частиц каждой из компонент:
, (3.40)
не зависящие от объема системы V. Здесь - общее число частиц в системе. Тогда
(3.41)
Выражение химического потенциала в этом случае принимает более сложный вид:
Вычислим производные и и подставим их в последнее выражение:
Тогда
(3.42)
Выражение для давления, напротив упростится:
(3.43)
Аналогичные соотношения могут быть получены и для потенциала Гиббса. Так, если в качестве аддитивного параметра задан объем, то с учетом (3.37) и (3.38) запишем:
это же выражение может быть получено из (3.юю), которое в случае многих частиц принимает вид:
(3.45)
Подставляя в (3.45) выражение(3.39), находим:
что полностью совпадает с (3.44).
Для того, чтобы перейти к традиционной записи потенциала Гиббса (через переменные состояния ()) необходимо разрешить уравнение (3.38):
Относительно объема V и подставить результат в (3.44) или (3.45):
Если в качестве аддитивного параметра задано полное число частиц в системе N, то потенциал Гиббса с учетом (3.42) принимает следующий вид:
Зная вид удельных величин: ,получим:
.
В последнем выражении суммирование по j заменим на суммирование по i. Тогда второе и третье слагаемые в сумме дают нуль. Тогда для потенциала Гиббса окончательно получим:
. (3.46)
Это же соотношение может быть получено и другим способом (из (3.41) и (3.43)):
Далее рассмотрим многокомпонентную систему “под поршнем”, состояние которой описывается параметрами (). Роль термодинамического потенциала в этом случае играет потенциал Гиббса:
(3.47)
Тогда для химического потенциала каждой из компонент получим:
(3.48)
При выводе (3.48) выполнены преобразования, аналогичные использованным при выводе (3.42), с помощью воображаемых стенок. Параметры состояния системы образуют набор ().
Роль термодинамического потенциала играет потенциал , который принимает вид:
(3.49)
Как видно из (3.49), единственным аддитивным параметром в данном случае является объем системы V.
Определим некоторые термодинамические параметры такой системы. Число частиц в данном случае определяется из соотношения:
(3.50)
Для свободной энергии F и потенциала Гиббса G можно записать:
(3.51)
(3.52)
Таким образом, соотношения для термодинамических потенциалов и параметров в случае многокомпонентных систем видоизменяются только за счет необходимости учета числа частиц (или химических потенциалов) каждой компоненты. При этом сама идея метода термодинамических потенциалов и расчетов, проводимых на его основе, остается неизменной.
4.
В качестве примера использования метода термодинамических потенциалов рассмотрим задачу химического равновесия. Найдем условия химического равновесия в смеси трех веществ, вступающих реакцию. Дополнительно предположим, что исходные продукты реакции является разреженными газами(это позволяет не учитывать межмолекулярные взаимодобывания), а в системе поддерживаются постоянные температура и давление , (такой процесс наиболее просто реализовать практически, поэтому условие постоянства давления и температуры создаются в промышленных установках для химической реакции ).
Условие равновесия термодинамической системы в зависимости от способа ее описания определяются максимальной энтропией системы или минимальной энергией системы (подробнее см. Базаров Термодинамика). Тогда можно получить следующие условия равновесия системы:
1. Состояние равновесия адиабатически изолированной термодинамической системы, заданной параметрами (), характеризуется максимумом энтропии:
(3.53а)
Второе выражение в (3.53а) характеризует устойчивость равновесного состояния.
2. Состояние равновесия изохорно-изотермической системы, заданное параметрами (), характеризуется минимумом свободной энергии. Условие равновесия в этом случае принимает вид:
(3.53б)
3. Равновесие изобарно-изотермической системы, задаваемой параметрами (), характеризуется условиями:
(3.53в)
4. Для системы в термостате с переменным числом частиц, определенной параметрами (), условия равновесия характеризуется минимумами потенциала :
(3.53г)
Перейдем к использованию химического равновесия в нашем случае.
В общем случае уравнение химической реакции записывается в виде:
(3.54)
Здесь - символы химических веществ, - так называемые, стехиометрические числа. Так, для реакции
Поскольку в качестве параметров системы выбраны давление и температура, которые положены постоянными. Удобно в качестве состояния термодинамического потенциала рассмотреть потенциал Гиббса G. Тогда условие равновесия системы будет заключаться в требовании постоянства потенциала G:
(3.55)
Поскольку мы рассматриваем трехкомпонентную систему, положим . Кроме того, учитывая (3.54), можно записать уравнение баланса для числа частиц ():
(3.56)
Вводя химические потенциалы для каждой из компонент: и учитывая сделанные допущения, находим:
(3.57)
Уравнение (3.57) было впервые получено Гиббсом в 1876г. и является искомым уравнением химического равновесия. Легко заметить, сравнивая (3.57) и (3.54), что уравнение химического равновесия получается из уравнения химической реакции путем простой замены символов реагирующих веществ на их химические потенциалы. Этот прием может быть использован и при записи уравнения химического равновесия для произвольной реакции.
В общем случае решение уравнения (3.57) даже для трех компонент является достаточно загруженным . Это связанно, во-первых, с тем, что даже для однокомпонентной системы получить явные выражения для химического потенциала весьма затруднительно. Во-вторых, относительные концентрации и не являются малыми величинами. То есть невозможно выполнить по ним разложение в ряд. Это еще сильнее усложняет задачу решения уравнения химического равновесия.
Физически отмеченные трудности объясняются необходимостью учета перестройки электронных оболочек атомов, вступающих в реакцию. Это приводит к определенным сложностям микроскопического описания , что сказывается и при макроскопическом подходе.
Поскольку мы условились ограничится исследованием разреженности газа, то можно воспользоваться моделью идеального газа. Будем считать, что все реагирующие компоненты являются идеальными газами, заполняющими общий объем и создающие давление p. В этом случае любым взаимодействием (кроме химических реакций) между компонентами смеси газов можно пренебречь. Это позволяет допустить, что химический потенциал i-го компонента зависит только от параметров этого же компонента.
(3.58)
Здесь - парциальное давление i-го компонента, причем:
С учетом (3.58) условие равновесия трехкомпонентной системы (3.57) примет вид:
(3.59)
Для дальнейшего анализа воспользуемся уравнением состояния идеального газа, которое запишем в виде:
(3.60)
Здесь через , как и ранее, обозначается термодинамическая температура . Тогда известная из школы запись принимает вид: , что и записано в (3.60).
Тогда для каждого компонента смеси получим:
(3.61)
Определим вид выражения химического потенциала идеального газа. Как следует из (2.22), химический потенциал имеет вид:
(3.62)
Учитывая уравнение (3.60), которое можно записать в виде , задача определения химического потенциала сводится к определению удельной энтропии и удельной внутренней энергии.
Система уравнений для удельной энтропии следует из термодинамических тождеств (3.8) и выражения теплоемкости (3.12):
Учитывая уравнение состояния (3.60) и переходя к удельным характеристикам, имеем:
(3.63)
Решение (3.63) имеет вид:
Система уравнений для удельной внутренней энергии идеального газа следует из (2.23):
Решение этой системы запишется в виде:
Подставляя (3.64) - (3.65) в (3.66) и учитывая уравнение состояния идеального газа, получаем:
(3.66)
Для смеси идеальных газов выражение (3.66) принимает вид:
Подставляя (3.67) в (3.59), получаем:
Выполняя преобразования, запишем:
Выполняя потенцирование в последнем выражении, имеем:
(3.68)
Соотношение (3.68) получило название закона действующих масс. Величина является функцией только температуры и получила название компоненты химической реакции.
Таким образом химическое равновесие и направление химической реакции определяется величиной давления и температуры.
Страницы: 1, 2