Технические измерения

21802, 21702, 21703, БВ-5070 и др.

КЭУМ, БВ-5057, БВ-5062, БВ-5078 и др.

Рис. 4.50. Приборы для контроля плавности работы

 


 









III

 

ШМ-1, БВ-5079

 

Полнота контакта. Размеры пятна контакта определяют либо по следам приработки после некоторого периода работы передачи на контрольно-обкатных станках и приспособлениях, либо по следам краски, оставившей отпечаток на парном колесе. С помощью поэлементных методов измеряют осевой шаг по нормали, отклонение направления зуба, погрешность формы и расположения контактной линии и др. Так, на приборе БВ-5028 (схема I на рис. 4.51) можно контролировать несколько параметров зубчатых колес — отклонения контактной линии Fkr, осевого шага Fpxnr и погрешности шага. Каретка с измерительным наконечником 1, предварительно установленным на угол наклона контактной линии, перемещается по направляющей 3. При согласованном движении каретки и вращении контролируемого зубчатого колеса 2 наконечник 1 воспринимает непрямолинейность и отклонения от направления этой линии, которые фиксируются самописцем. Отклонение осевого шага воспринимается измерительным наконечником тогда, когда последний перпендикулярен винтовой линии.

Поворот зубчатого колеса на осевой шаг осуществляют с помощью микроскопа с оптическим диском. При измерении отклонений от направления зуба Fbr прямозубых колес на приборах, у которых существует каретка с точными продольными направляющими, измерительный наконечник перемещают вдоль оси измеряемого колеса. При контроле косозубых колес винтовую линию, воспроизводимую в приборе в результате поворота колеса и продольного перемещения измерительного узла или, как в ходомере БВ-5034 (схема II на рис. 4.51), продольного перемещения стола 1 вместе с проверяемым колесом 4, сравнивают с реальной эвольвентой. Согласованность поступательного и вращательного движений колеса обеспечивают с помощью наклонной линейки и охватывающих шпиндель 3 лент, концы которых закреплены на поперечной каретке 2. Измерительный узел


 










I









II

БВ-5028 и др.

БВ-5034, БВ-5075 и др.


Рис. 4.51. Приборы для контроля полноты контакта


5, установленный на станине, можно настраивать на необходимые параметры зубчатого колеса. Микроскоп 6 позволяет осуществлять точную установку линейки 7 на заданный угол.Боковой зазор между неработающими профилями зубьев в собранной передаче можно контролировать с помощью набора щупов, c помощью заложенной между зубьями свинцовой проволочки или методом люфтования. В последнем случае одно из зубчатых колес медленно вращается, а второе при этом совершает высокочастотные колебания, амплитуда которых характеризует боковой зазор. В реальном зубчатом колесе боковой зазор образуется в результате утонения зуба при смещении исходного режущего контура ЕHr на зуб колеса. Это смещение измеряют на тангенциальных зубомерах (схема I на рис. 4.52), имеющих два базовых щупа 1 и 2, измерительный наконечник 3 и показывающий прибор 4. Перед измерением зубомер настраивают на заданный модуль по ролику расчетного диаметра.

С помощью тангенциальных зубомеров контролируют, по существу, положение постоянной хорды а – а относительно линии выступов b - b, а с помощью кромочных зубомеров измеряют толщину зуба S (параметр Ecr) на заданном расстоянии h от линии выступов (схема II на рис. 4.52). Эти зубомеры имеют нониусные, микрометрические или индикаторные отсчетные устройства. В нониусных штангензубомерах требуемое положение постоянной хорды, т. е. координирующей губки 4, устанавливают с помощью нониусной пары 1 - 2, а измерения хорды осуществляют с помощью нониусной пары 7 - 6 путем введения измерительных наконечников 3 и 5 во впадины зубчатого венца.










НЦ 23500 - 23800

БВ-5016к, БВ-5017к, ШЗ-18, ШЗ-36, ЗИМ-16 и др.


 Рис. 4.52. Приборы для контроля бокового зазора


Существуют различные приборы для контроля цилиндрических, конических, червячных, червяков и прочих колес станкового и накладного типов, разделяемых по классам точности на три группы: А, АВ и В. Интенсивно разрабатываются полуавтоматические и автоматические приборы, в том числе приборы активного контроля, использующие экранную оптику, цифровой отсчет, запись результатов измерения, машинную обработку результатов, управление производственным процессом и т. п.


4.8. Измерения с помощью цифровых измерительных приборов


В настоящее время расширяется разработка и применение в промышленности электронных цифровых вычислительных машин, в которых требуемые действия выполняются электронными счетчиками и управляющими схемами.

По своим эксплуатационным свойствам цифровые электроизмерительные приборы характеризуются высокой точностью измерения, быстродействием, автоматизацией измерения и удобством регистрации результатов измерения.

Цифровое отсчетное устройство может быть придано к средству измерения, содержащему электронную часть прибора, или как комплекс измерительных средств может быть непосредственно придано (встроено) в металлообрабатывающее оборудование.

Например [35], к микроскопу инструментальному БМИ-1Ц придано устройство цифровое пересчетное УЦП-1м. Электронная часть прибора будет содержать преобразователь электронно-оптический в координатах Х и У и устройство цифровое пересчетное.

Преобразователь электронно-оптический предназначен для преобразования реверсивных линейных перемещений в пропорциональное им число электрических импульсов. Преобразователь включает в себя механическую и электронно-оптическую системы. Основой механической системы является узел микровинта с приводом для вращения. Микровинт преобразует круговое вращение в продольное перемещение.

Цифровое отсчетное устройство (ЦОУ) для оснащения универсальных металлорежущих станков (рис. 4.53) контролирует перемещение рабочих органов станка (суппорта, каретки, стола и т. п.) и в наглядной форме на цифровом табло показывает их положение относительно выбранного начала координат. В соответствии с показаниями на цифровом табло станочник обрабатывает деталь до получения нужных размеров, управляя станком, как и обычно, вручную.

Цифровое устройство установлено на отсчетные барабаны микрометрических винтов поперечного и продольного перемещения стола. Оно состоит (рис. 4.53) из круглого реостатного преобразователя 1, механизма 2 сброса показаний на нуль, счетчика 3 перемещений целых миллиметров и цифрового прибора 4, по которому отсчитывают доли миллиметра с дискретностью 0,001 мм. Для преобразования линейных перемещений в цифровой отсчет

служит проволочный реостат сопротивлением 10 кОм, выбранный из расчета, что каждые 10 Ом соответствуют 0,001 мм линейного перемещения при шаге микрометрического винта 1 мм. В качестве цифрового отсчетного устройства взят цифровой килоомметр, серийно выпускаемый отечественной промышленностью.

Устройство цифровое пересчетное (рис. 4.54) включает в себя устройство управления, реверсивный счетчик, счетчик, переключатели и источники питания. Предустановка любого пятиразрядного десятичного числа со знаками (+) или (-) осуществляется с помощью переключателя "Предустановка". При нажатии кнопки "Запись" импульсы с устройства управления поступают одновременно на входы счетчика и реверсивного счетчика и через дешифратор на табло индицируются числа. При помощи вращения привода механической системы передаются числа с оптико-механического преобразователя. Цифровое отсчетное устройство (ЦОУ) для оснащения уни­версальных металлорежущих станков (рис. 4.55) контролирует перемещение рабочих органов станка (суппорта, каретки, стола и т. п.) и в наглядной форме на цифровом табло показывает их положение относительно выбранного начала координат. В соответствии с показаниями на цифровом табло станочник обрабатывает деталь до получения нужных размеров, управляя станком, как и обычно, вручную.

Цифровое отсчетное устройство на базе выпускаемых датчиков и электронных блоков имеет основные характеристики: цена отсчета от 0,001 до 0,02 мм; наибольшая скорость контролируемого перемещения при цене отсчета 0,01 - 15 м/мин при цене отсчета 0,001 мм - 1,5 м/мин; наибольшая величина контролируемого перемещения не больше 1 м при цене отсчета 0,001 мм и не более 10 м при цене отсчета 0,01 мм.


4.9. Измерение электрических и магнитных величин

 

По системе SI единицы электрических и магнитных величин, применяемые в Российской Федерации, приведены в табл. 4.1.

Таблица 4.1

Единицы электрических и магнитных величин



Величина


Наименование

Обозначение


Величина


Наименование


Обозначение


Рус-ское

Меж-дуна-род-ное


Рус-ское

Меж-дуна-род-ное

Сила электри-ческого тока, магнитодвижущая сила

Ампер

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать