Технические требования
а) обеспечить линейный размер пружины находящейся в сжатом состоянии в пределах 15±0,5мм.
б) обеспечить силу сжатия пружин клапана не менее 0,6МПа
в) обеспечить усилие при котором клапаны удерживаются в закрытом положении не более 9 МПа (сила, которой взрослый человек может надавить рукой).
г) обеспечить расстояние между кулачком и направляющей в пределах 0,5±0,2мм.
Несоблюдение приведённых выше требований повлечёт за собой невозможность выполнения краном своего служебного назначения, например: при несоблюдении технического требования - обеспечения усилия сжатия пружин, возможен случай, когда из-за малой его величины произойдёт самопроизвольное открытие отпускного клапана и в последствии невозможность набора необходимого давления в тормозном цилиндре.
Технологичность конструкции крана 172.000
Анализ чертежа корпуса 172.001 показал, что он имеет симметричную геометрию в продольном сечении. Это сделано, для того чтобы сократить время сборки узла, используя одинаковые детали, как в левой, так и в правой части.
Диаметры расточки заглушки 172.005 и ступенчатого торца гнезда 172.011 рассчитаны и подобраны таким образом, чтобы в состав узла - корпус 172.010, входили уже имеющиеся на производстве детали от ранее изготовленных приборов, такие как пружины 150.203 и 483.031.
При закреплении деталей и узлов крана 172.000 используются стандартные изделия, такие как винт М6х10 ГОСТ 1476-93, винт М6х12 ГОСТ 17475-80, винт ВМ3х6 ГОСТ 17473-80, гайка М8 ГОСТ 5915-70, гайка М12 ГОСТ 5915-70, шпилька М12х32 СТП 10-215-82.
Диаграмма зависимостей линейных размеров пружин от силы их сжатия
Из диаграммы видно, что общее усилие создаваемое сжатыми пружинами (13,8 кгс) намного выше требуемого (6 кгс). В целях экономии целесообразней оставить только одну пружину – 483.031. Т.к. для её сжатия до размера 15±0,5мм. необходимо усилие 9±0,4кгс., что удовлетворяет требованиям предъявляемым к узлу.
2.3. Выбор метода достижения требуемой точности узла.
В результате проведенного анализа технических требований на узел было выявлено одно из наиболее важных требований, а именно: обеспечить линейный размер пружины находящейся в сжатом состоянии равный 15мм. с допуском ±0,5мм.
Для выполнения этого требования необходимо выявить все размеры деталей (в номиналах и допусках), влияющих на выполнение этого требования. Для этого необходимо выявить замыкающее звено и метод достижения точности РЦ.
Обеспечение точности создаваемого узла сводится к достижению требуемой точности замыкающих звеньев размерных цепей, заложенных в его конструкцию, и размерных цепей, возникающих в процессе изготовления крана. Задачу обеспечения требуемой точности замыкающего звена решим одним из нижеследующих методов: полной и неполной взаимозаменяемости. Определим наиболее экономичный метод с учётом с предъявляемыми требованиями.
Размерная цепь А состоит из:
АΔ - замыкающее звено – длина пружины находящейся в сжатом состоянии при силе сжатия 1,1 МПа
A1 - размер между левым Æ22мм. и правым Æ13мм. торцом клапана 172.011
A2 - Высота седла Æ15мм. седла 172.009
A3 - Ширина бурта Æ22мм. седла 172.009
A4 - Глубина отверстия М33 в корпусе 172.001
A5 - Расстояние от торца М33 до торца Æ40мм. заглушки 172.005
A6 - Глубина отверстия Æ13 в заглушке 172.005
Размерная цепь А, определяющая зазор, показана в графической части, лист 1.
а) Метод полной взаимозаменяемости.
Сущность метода заключается в том, что требуемая точность замыкающего звена размерной цепи достигается во всех случаях её реализации путём включения в неё составляющих звеньев без выбора, подбора или изменения их значений. Сборка изделий при использовании этого метода сводится к механическому соединению взаимозаменяемых деталей. При этом у 100% собираемых объектов автоматически обеспечивается требуемая точность замыкающих звеньев размерных цепей.
Определение номиналов, полей допусков, верхнего и нижнего предельных отклонений, координат середины поля допуска размерной цепи А, проходит по следующему алгоритму действий:
1.Уравнение номиналов.
где
n – число увеличивающих звеньев;
m – число уменьшающих звеньев.
2. уравнение допусков
из условия задачи следует, что поле допуска замыкающего звена
,
а координата середины поля допуска замыкающего звена
Имея дело с плоской линейной размерной цепью и решая задачу методом полной взаимозаменяемости, при назначении полей допусков на соответствующие звенья необходимо соблюдения условия:
3.Уравнения координат середин полей допусков.
Координату середины поля допуска шестого звена находим из уравнения:
Правильность назначения допусков проверим, определив предельные отклонения замыкающего звена:
Сопоставление с условиями задачи показывает, что допуски установлены правильно.
б) Метод неполной взаимозаменяемости.
Сущность метода заключается в том, что требуемая точность замыкающего звена размерной цепи достигается с некоторым, заранее обусловленным риском путём включения в неё составляющих звеньев без выбора, подбора или изменение их значений.
Зададим значение коэффициента риска tАΔ , считая, что в данном случае Р=1% экономически оправдан. Такому риску tАΔ =2,57.
Полагая, что условия изготовления деталей таковы, что распределение отклонений составляющих звеньев будет близким к закону Гаусса, принимаем
Найдём средний допуск на звенья при обоих методах:
Ai
Метод полной взаимозаменяемости
Метод неполной взаимозаменяемости
∆в
∆н
∆0
TA
TAср
∆в
∆н
∆0
TA
TAср
A1
+0,08
-0,08
0
0,16
0,17
+0,25
-0,25
0
0,5
0,48
A2
+0,08
-0,08
0
0,16
+0,23
-0,23
0
0,46
A3
+0,08
-0,08
0
0,16
+0,20
-0,20
0
0,40
A4
+0,09
-0,09
0
0,18
+0,26
-0,26
0
0,52
A5
+0,08
-0,08
0
0,16
+0,23
-0,23
0
0,46
A6
+0,09
-0,09
0
0,18
+0,26
-0,26
0
0,52
Для достижения требуемой точности замыкающего звена в одной размерной цепи выбираем метод не полной взаимозаменяемости. Данный метод позволяет расширить допуски на составляющие звенья, что ведёт к понижению себестоимости и работоспособности по отношению к методам пригонки и регулирования.
Метод неполной взаимозаменяемости не гарантирует получения 100% изделий с отклонениями замыкающего звена в пределах заданного допуска, с коэффициентом риска равным 1%. Однако дополнительные затраты труда и средств на исправление небольшого числа изделий, размеры которых вышли за пределы допуска, в большинстве случаев малы по сравнению с экономией труда и средств, получаемых при изготовлении изделия, размеры которого имеют более широкие допуски.
Экономический эффект, получаемый от использования метода неполной взаимозаменяемости вместо метода полной взаимозаменяемости, возрастает по мере повышения требований к точности замыкающего звена и увеличении числа составляющих звеньев в размерной цепи.